Skip to main content
Log in

Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

It has been postulated that fibroblast growth factor (FGF) treatment of cultured limb bud mesenchyme cells reinforces the lateral inhibitory effect, but the cells also show accelerated pattern appearance. In the present study, we analyze how a small change in a specific parameter affects the speed of pattern appearance in a Turing reaction-diffusion system using linear stability analysis. It is shown that the sign of the change in appearance speed is qualitatively decided if the system is under the diffusion-driven instability condition, and this is confirmed by numerical simulations. Numerical simulations also show that a small change in parameter value induced easily detectable differences in the appearance speed of patterns. Analysis of the Gierer-Meinhardt model revealed that a change in a single parameter can explain two effects of FGF on limb mesenchyme cells—reinforcement of lateral inhibition and earlier appearance of pattern. These qualitative properties and easy detectability make this feature a promising tool to elucidate the underlying mechanisms of biological pattern formationwhere the quantitative parameters are difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Delannet, M., F. Martin, B. Bossy, D. A. Cheresh, L. F. Reichardt and J. L. Duband (1994). Specific roles of the alpha v beta 1, alpha v beta 3 and alpha v beta 5 integrins in avian neural crest cell adhesion and migration on vitronectin. Development 120, 2687–2702.

    Google Scholar 

  • Downie, S. A. and S. A. Newman (1994). Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation. Dev. Biol. 162, 195–208.

    Article  Google Scholar 

  • Downie, S. A. and S. A. Newman (1995). Different roles for fibronectin in the generation of fore and hind limb precartilage condensations. Dev. Biol. 172, 519–530.

    Article  Google Scholar 

  • Ermentrout, B. (1991). Stripes or spots? Nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proc. R. Soc. Lond. A 434, 413–417.

    Article  MATH  MathSciNet  Google Scholar 

  • Gierer, A. and H. Meinhardt (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  Google Scholar 

  • Gilbert, S. F. (2000). Developmental Biology, Massachusettes: Sinauer.

    Google Scholar 

  • Hayes, C., M. F. Lyon and G. M. Morriss-Kay (1998). Morphogenesis of doublefoot (dbf), a mouse mutant with polydactyly and craniofacial defects. J. Anat. 193, 81–91.

    Article  Google Scholar 

  • Lyons, M. J. and L. G. Harrison (1992). Stripe selection: an intrinsic property of some pattern-forming models with nonlinear dynamics. Dev. Dyn. 195, 201–215.

    Google Scholar 

  • Maini, P. K. and M. Solursh (1991). Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 129, 91–133.

    Article  Google Scholar 

  • Miura, T., M. Komori and K. Shiota (2000). A novel method for analysis of the periodicity of chondrogenic patterns in limb bud cell culture: correlation of in vitro pattern formation with theoretical models. Anat. Embryol. (Berl) 201, 419–428.

    Article  Google Scholar 

  • Miura, T. and K. Shiota (2000a). Extracellular matrix environment influences chondrogenic pattern formation in limb bud micromass culture: experimental verification of theoretical models. Anat. Rec. 258, 100–107.

    Article  Google Scholar 

  • Miura, T. and K. Shiota (2000b). Tgfbeta2 acts as an “activator” molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture. Dev. Dyn. 217, 241–249.

    Article  Google Scholar 

  • Moftah, M. Z., S. A. Downie, N. B. Bronstein, N. Mezentseva, J. Pu, P. A. Maher and S. A. Newman (2002). Ectodermal fgfs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via fgf receptor 2. Dev. Biol. 249, 270–282.

    Article  Google Scholar 

  • Murray, J. D. (1993). Mathematical Biology, Berlin: Springer.

    MATH  Google Scholar 

  • Newman, S. A. (1996). Sticky fingers: Hox genes and cell adhesion in vertebrate limb development. Bioessays 18, 171–174.

    Article  Google Scholar 

  • Newman, S. A. and H. L. Frisch (1979). Dynamics of skeletal pattern formation in developing chick limb. Science 205, 662–668.

    Google Scholar 

  • Newman, S. J., H. L. Frisch and J. K. Percus (1988). On the stationary state analysis of reaction-diffusion mechanisms for biological pattern formation. J. Theor. Biol. 134, 183–197.

    MathSciNet  Google Scholar 

  • Othmer, H. G. (1986). On the Newman-Frisch model of limb chondrogenesis. J. Theor. Biol. 121, 505–508.

    MathSciNet  Google Scholar 

  • Owens, E. M. and M. Solursh (1981). In vitro histogenic capacities of limb mesenchyme from various stage mouse embryos. Dev. Biol. 88, 297–311.

    Article  Google Scholar 

  • Ros, M. A., G. E. Lyons, S. Mackem and J. F. Fallon (1994). Recombinant limbs as a model to study homeobox gene regulation during limb development. Dev. Biol. 166, 59–72.

    Article  Google Scholar 

  • Wolpert, L. (1998). Principles of Development, Oxford University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura, T., Maini, P.K. Speed of pattern appearance in reaction-diffusion models: Implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649 (2004). https://doi.org/10.1016/j.bulm.2003.09.009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2003.09.009

Keywords

Navigation