Biophysical Journal
Volume 99, Issue 9, 3 November 2010, Pages 2978-2986
Journal home page for Biophysical Journal

Article
The Role of Thin Filament Cooperativity in Cardiac Length-Dependent Calcium Activation

https://doi.org/10.1016/j.bpj.2010.09.003Get rights and content
Under an Elsevier user license
open archive

Abstract

Length-dependent activation (LDA) is a prominent feature of cardiac muscle characterized by decreases in the Ca2+ levels required to generate force (i.e., increases in Ca2+ sensitivity) when muscle is stretched. Previous studies have concluded that LDA originates from the increased ability of (strong) cross-bridges to attach when muscle is lengthened, which in turn enhances Ca2+ binding to the troponin C (TnC) subunit of the troponin complex. However, our results demonstrate that inhibition of strong cross-bridge attachment with blebbistatin had no effect on the length-dependent modulation of Ca2+ sensitivity (i.e., EC50) or Ca2+ cooperativity, suggesting that LDA originates upstream of cross-bridge attachment. To test whether LDA arises from length dependence of thin-filament activation, we replaced native cTnC with a mutant cTnC (DM-TnC) that is incapable of binding Ca2+. Although progressive replacement of native cTnC with DM-TnC caused an expected monotonic decrease in the maximal force (Fmax), DM-TnC incorporation induced much larger increases in EC50 and decreases in Ca2+ cooperativity at short lengths than at long lengths. These findings support the conclusion that LDA arises primarily from the influence of length on the modulation of the Ca2+ cooperativity arising from interaction between adjacent troponin-tropomyosin complexes on the thin filament.

Cited by (0)