Skip to main content
Log in

Response of MG63 osteoblast cells to surface modification of Ti-6Al-4V implant alloy by laser interference lithography

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL). In this work, laser interference lithography was employed to fabricate the microstructures of grooves, dots and dimples onto the surfaces of Ti-6Al-4V samples. Two and three beam LIL systems were developed to carry out the experiments. The laser treatment resulted in the increases of the roughness and the contact angle of water on the implant alloy surfaces. The proliferation of osteoblasts was analyzed by MTT (3-(4,5-dimethyl- 2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay for the time periods of 4 hours, 2 days, 3 days, and 6 days. The MTT test results demonstrated that the laser treatment surfaces had a positive impact on the proliferation of osteoblast cells after 24 hours. The alloy surface morphology and the morphological changes of MG63 cells cultured on the laser textured Ti-6Al-4V surface were observed by Scanning Electron Microscope (SEM). The SEM results indicated that the osteoblast cells were aligned on grooved surfaces and they were prolonged with the structures. Enzymatic detachment results showed that the 20 µm grooved structures provided the better cell adhesion to the textured Ti-6Al-4V surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulerich J P, Ionescu L C, Chen J, Soboyejo W O, Arnold C B. Modifications of Ti-6Al-4V surfaces by direct-write laser machining of linear grooves. Photon Processing in Microelectronics and Photonics, 2007, 6458, 645819.

    Article  Google Scholar 

  2. Yan C, Hao L, Hussein A, Young P. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 61–73.

    Article  Google Scholar 

  3. Oliveira D P, Palmieri A, Carinci F, Bolfarini C. Gene expression of human osteoblasts cells on chemically treated surfaces of Ti-6Al-4V-ELI. Materials Science and Engineering, 2015, C51, 248–255.

    Article  Google Scholar 

  4. Intranuovo F, Favia P, Sardella E, Ingrosso C, Nardulli M, Agostino R, Gristina R. Osteoblast-like cell behavior on plasma deposited micro/nanopatterned coatings. Biomacromolecules, 2011, 12, 380–387.

    Article  Google Scholar 

  5. Burger E, Klein-nulend J. Mechanotransduction in bone-role of the lacunocanalicular network. The FASEB Journal, 1999, 13, 101–112.

    Article  Google Scholar 

  6. Pioletti D P. Integration of mechanotransduction concepts in bone tissue engineering. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 1050–1055.

    Article  Google Scholar 

  7. Maniotis A J, Chen C S, Ingber D E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Cell Biology, 1997, 94, 849–854.

    Google Scholar 

  8. Walboomers X F, Monaghan W, Curtis A S G, Jansen J A. Attachment of fibroblasts on smooth and microgrooved polystyrene. Journal of Biomedical Material Research, 1999, 55, 212–220.

    Article  Google Scholar 

  9. Schneider G B, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, Stanford C. Implant surface roughness affects osteoblast gene expression. Journal of Dental Research, 2003, 82, 372–376.

    Article  Google Scholar 

  10. Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Hölzemann G, Goodman S L, Kessler H. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembiochem, 2000, 1, 107–114.

    Article  Google Scholar 

  11. Ball M, Grant D M, Lo W, Scotchford C A. The effect of different surface morphology and roughness on osteoblastlike cells. Journal of Biomedical Materials Research Part A, 2007, 86A, 637–647.

    Article  Google Scholar 

  12. Rivera-Denizard O, Diffoot-Carlo N, Navas V, Sundaram P A. Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. Journal of Materials Science Materials in Medicine, 2007, 19, 153–158.

    Article  Google Scholar 

  13. Chen J, Mwenifumbo S, Langhammer C, McGovern J P, Li M, Beye A, Soboyejo W O. Cell/surface interactions and adhesion on Ti-6Al-4V: Effects of surface texture. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 82, 360–373.

    Article  Google Scholar 

  14. Havlikova J, Strasky J, Vandrovcova M, Harcuba P, Mhaede M, Janecek M, Bacakova L. Innovative surface modification of Ti-6Al-4V alloy with a positive effect on osteoblast proliferation and fatigue performance. Materials Science and Engineering C, 2014, 39, 371–379.

    Article  Google Scholar 

  15. Dalby M J, Riehle M O, Sutherland D S, Agheli H, Curtis A S G. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. Journal of Biomedical Materials Research Part A, 2003, 69A, 314–322.

    Article  Google Scholar 

  16. Matsuzaka K, Yoshinari M, Shimono M, Inoue T. Effects of multigrooved surfaces on osteoblast-like cells in vitro: Scanning electron microscopic observation and mRNA expression of osteopontin and osteocalcin. Journal of Biomedical Materials Research Part A, 2004, 68, 227–234.

    Article  Google Scholar 

  17. Meng W, Zhou Y, Zhang Y, Cai Q, Yang L, Zhao J, Li C. Osteoblast behavior on hierarchical micro-/nano-structured titanium surface. Journal of Bionic Engineering, 2011, 8, 234–241.

    Article  Google Scholar 

  18. Li H, Yu S, Han X, Zhang S, Zhao Y. A simple method for fabrication of bionic superhydrophobic zinc coating with crater-like structures on steel substrate. Journal of Bionic Engineering, 2016, 13, 622–630.

    Article  Google Scholar 

  19. Zhang J, Wang Z, Di X, Zhao L, Wang D. Effects of azimuthal angles on laser interference lithography. Applied Optics, 2014, 53, 6294–6301.

    Article  Google Scholar 

  20. Li L, Wang Z, Li W, Peng K, Zhang Z, Yu M. Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography. Applied Physics Letters, 2015, 107, 133104.

    Article  Google Scholar 

  21. Chen J, Ulerich J P, Abelev E, Fasasi A, Arnold C B, Soboyejo W O. An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces. Materials Science and Engineering C, 2009, 29, 1442–1452.

    Article  Google Scholar 

  22. Qin L, Zeng Q, Wang W, Zhang Y, Dong G. Response of MC3T3-Eosteoblast cells to the microenvironment produced on Co-Cr-Mo alloy using laser surface texturing. Journal of Material Science, 2013, 49, 2662–2671.

    Article  Google Scholar 

  23. Popat K C, Chatvanichkul K I, Barnes G L, Latempa Jr T J, Grimes C A, Desai T A. Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. Journal of Biomedical Materials Research Part A, 2007, 80, 955–964.

    Article  Google Scholar 

  24. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 2009, 13, 172–184.

    Article  Google Scholar 

  25. Riveiro A, Soto R, Val J, Comesana R, Boutinguiza M, Quintero F, Lusquinos F, Pou J. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPEfor biomedical applications. Applied Surface Science, 2014, 302, 236–242.

    Article  Google Scholar 

  26. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettabilityof titanium and titanium alloys and cell behaviour. Material Science Engineering C, 2003, 23, 551–560.

    Article  Google Scholar 

  27. Martin J Y, Schwartz Z, Hummert T W, Schraub D M, Simpson J, Lankford Jr J, Dean D D, Cochran D L, Boyan B D. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblastlike cells (MG63). Journal Biomedical Materials Reseach, 1995, 29, 389–401.

    Article  Google Scholar 

  28. Riveiro A, Soto R, Comesana R, Boutinguiza M, Val J D, Quintero F, Lusquinos F, Pou J. Laser surface modification of PEEK. Applied Surface Science, 2012, 258, 9437–9442.

    Article  Google Scholar 

  29. Anselme K, Davidson P, Popa A M, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomaterialia, 2010, 6, 3824–3846.

    Article  Google Scholar 

  30. Bagherifard S, Hickey D J, Luca A C, Malheiro V N, Markaki A E, Guagliano M, Webster T J. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials, 2015, 73, 185–197.

    Article  Google Scholar 

  31. Li W, Wang Z, Wang D, Zhang Z, Zhao L, Li D, Qiu R, Maple C. Superhydrophobic dual micro- and nanostructures fabricated by direct laser interference lithography. Optical Engineering, 2014, 53, 1709–1717.

    Google Scholar 

  32. Mukherjee S, Dhara S, Saha P. Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: An in vitro study. International Journal of Advanced Manufacturing Technology, 2013, 76, 5–15.

    Article  Google Scholar 

  33. Rosales-Leal J I, Rodríguez-Valverde M A, Mazzaglia G, Ramón-Torregrosa P J, Díaz-Rodríguez L, García-Martínez O, Vallecillo-Capilla M, Ruiz C, Cabrerizo-Vílchez M A. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 222–229.

    Article  Google Scholar 

  34. Ponsonneta L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettabilityof titanium and titanium alloys and cell behaviour. Materials Science and Engineering C, 2003, 23, 551–560.

    Article  Google Scholar 

  35. Cheng A, Humayun A, Cohen D J, Boyan B D, Schwartz Z. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication, 2014, 6, 045007.

    Article  Google Scholar 

  36. Kumari R, Scharnweber T, Pfleging W, Besser H, Majumdar J D. Laser surface textured titanium alloy (Ti-6Al-4V)-part II-Studies on bio-compatibity. Applied Surface Science, 2015, 357, 750–758.

    Article  Google Scholar 

  37. Fasasi A Y, Mwenifumbo S, Rahbar N, Chen J, Li M, Beye A C, Arnold C B, Soboyejo W O. Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Materials Science and Engineering C, 2009, 29, 5–13.

    Article  Google Scholar 

  38. Soboyejo W O, Nemetski B, Allameh S, Marcantonio N, Mercer C, Ricci J. Interactions between MC3T3-Ecells and textured Ti-6Al-4V surfaces. Journal of Biomedical Materials Research, 2002, 62, 56–72.

    Article  Google Scholar 

  39. Schmalzried T, Kwong L, Jasty M, Sedlacek R, Haire T, Connor D O, Bragdon C, Kabo J, Malcolm A, Harris W. The mechanism of loosening of cemented acetabular components in total hip arthroplasty: Analysis of specimens retrieved at autopsy. Clinical Orthopaedics, 1992, 274, 60–64.

    Google Scholar 

  40. Bobyn J, Jacobs J, Tanzer M, Urban R, Aribindi R, Sumner D, Turner T, Brooks C. The susceptibility of smooth implant surfaces to peri-implant fibrosis and migration of polyethylene wear debris. Clinical Orthopaedics, 1995, 311, 21–39.

    Google Scholar 

  41. Clark P, Connolly P, Curtis A S G, Dow J A T, Wilkinson C D W. Topographical control of cell behavior. I. Simple step cues. Development, 1987, 99, 439–448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuobin Wang or Bojian Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Li, W., Cao, L. et al. Response of MG63 osteoblast cells to surface modification of Ti-6Al-4V implant alloy by laser interference lithography. J Bionic Eng 14, 448–458 (2017). https://doi.org/10.1016/S1672-6529(16)60410-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60410-9

Keywords

Navigation