Skip to main content
Log in

Sound Modulation in Singing Katydids Using Ionic Polymer-Metal Composites (IPMCs)

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Many insect families have evolved to produce and detect complex singing patterns for the purposes of mating, display of dominance, predator escape, and other needs. While the mechanisms of sound production by insects have been thoroughly studied, man-machine exploitation of such mechanisms has remained unreported. We therefore describe a method to modulate the frequency spectrum in the chirp call of a singing insect, Gampsocleis gratiosa (Orthoptera: Tettigoniidae), a large katydid indigenous to China and commonly known as Guo Guo or Chinese Bush Cricket. The chirp modulation was achieved through the contact of a ribbon of Ionic Polymer-Metal Composite (IPMC) against wing of the insect. The IPMC effectively served as an actuator when a small DC voltage was applied to the ribbon’s faces. By applying a sequential on/off voltage waveform to the IPMC ribbon, the katydid’s chirp was modulated in a corresponding manner. This configuration can be used as part of a broader application of using singing insects to harness their acoustic power to produce and propagate machine-induced messages into the acoustic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otte D. Evolution of cricket songs. Journal of Orthoptera Research, 1992, 25–49.

    Google Scholar 

  2. Bennet-Clark H C. Acoustics of insect song. Nature, 1971, 234, 255–259.

    Article  Google Scholar 

  3. Hartley J C. Acoustic behaviour and phonotaxis in the duetting ephippigerines, Steropleurus nobrei and Steropleurus stali (Tettigoniidae). Zoological Journal of the Linnean Society, 1993, 107, 155–167.

    Article  Google Scholar 

  4. Walker T J. Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Annals of the Entomological Society of America, 1957, 50, 626–636.

    Article  Google Scholar 

  5. Thiele D, Bailey W J. The function of sound in male spacing behaviour in bush-crickets (Tettigoniidae, Orthoptera). Australian Journal of Ecology, 1980, 5, 275–286.

    Article  Google Scholar 

  6. Gwynne D T. Katydids and Bush-Crickets: Reproductive Behavior and Evolution of the Tettigoniidae, Cornell University Press, Ithaca, New York, 2001.

    Google Scholar 

  7. Arak A, Eiriksson T. Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation. Behavioral Ecology and Sociobiology, 1992, 30, 365–372.

    Article  Google Scholar 

  8. Sales G, Pye D. Ultrasonic Communication by Animals, Chapman and Hall, London, 1974.

    Book  Google Scholar 

  9. Bennet-Clark H C. Songs and the physics of sound production. In Huber F, Moore T E, Loher W (eds.), Cricket Behavior and Neurobiology, 1989, 227–261.

    Google Scholar 

  10. Elliott C J H, Koch U T. The clockwork cricket. Naturwissenschaften, 1985, 72, 150–153.

    Article  Google Scholar 

  11. Koch U T, Elliott C J H, Schäffner K H, Kleindienst H U. The mechanics of stridulation of the cricket Gryllus campestris. Journal of Comparative Physiology A, 1988, 162, 213–223.

    Article  Google Scholar 

  12. Bennet-Clark H C. Resonators in insect sound production: How insects produce loud pure-tone songs. Journal of Experimental Biology, 1999, 202, 3347–3357.

    Google Scholar 

  13. Walker T J, Dew D. Wing movements of calling katydids: Fiddling finesse. Science, 1972, 178, 174–176.

    Article  Google Scholar 

  14. Zhang C X, Tang X D, Cheng J A. The utilization and industrialization of insect resources in China. Entomological Research, 2008, 38, S38–S47.

    Article  Google Scholar 

  15. Nocke H. Biophysik der schallerzeugung durch die vorderflügel der grillen. Zeitschrift fur Vergleichende Physiologie, 1971, 74, 272–314. (in German)

    Article  Google Scholar 

  16. Bailey W J. The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera): I. The tegminal generator. Journal of Experimental Biology, 1970, 52, 495–505.

    Google Scholar 

  17. Bailey W J, Broughton W B. The mechanics of stridulation in bush crickets (Tettiginioidea, Orthoptera) II. Conditions for resonance in the tegminal generator. Journal of Experimental Biology, 1970, 52, 507–517.

    Google Scholar 

  18. Prestwich K N, Lenihan K M, Martin D M. The control of carrier frequency in cricket calls: A refutation of the subalar-tegminal resonance/auditory feedback model. Journal of Experimental Biology, 2000, 203, 585–596.

    Google Scholar 

  19. Stephen R, Hartley J. Sound production in crickets. Journal of Experimental Biology, 1995, 198, 2139–2152.

    Google Scholar 

  20. Hartley J C, Jatho M, Kalmring K, Stephen R O, Schörder H. Constrasting sound production in tettigoniidae. Journal of. Orthoptera Research, 2000, 9, 121–127.

    Article  Google Scholar 

  21. Gerhardt H C, Huber F. Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions, University of Chicago Press, 2002.

    Google Scholar 

  22. Fang B K, Ju M S, Lin C C. A new approach to develop ionic polymer–metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sensors and Actuators A, 2007, 137, 321–329.

    Article  Google Scholar 

  23. Yeom S W, Oh II K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Materials and Structures, 2009, 18, 085002.

  24. Chen Z, Shatara S, Tan X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Transactions on Mechatronics, 2010, 15, 448–459.

    Article  Google Scholar 

  25. Kim B, Kim D H, Jung J, Park J O. A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Materials and Structures, 2005, 14, 1579–1585.

    Article  Google Scholar 

  26. Lee S J, Han M J, Kim S J, Jho J Y, Lee H Y, Kim Y H. A new fabrication method for IPMC actuators and application to artificial fingers. Smart Materials and Structures, 2006, 15, 1217–1224.

    Article  Google Scholar 

  27. Shahinpoor M. Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites. Bioinspiration & Biomimetics, 2011, 6, 046004.

  28. Biddiss E, Chau T. Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite. Medical Engineering & Physics, 2006, 28, 568–578.

    Article  Google Scholar 

  29. Bonomo C, Brunetto P, Fortuna L, Giannone P, Graziani S, Strazzeri S. A tactile sensor for biomedical applications based on IPMCs. IEEE Sensors Journal, 2008, 8, 1486–1493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Chiu, CW., Sanchez, C.J. et al. Sound Modulation in Singing Katydids Using Ionic Polymer-Metal Composites (IPMCs). J Bionic Eng 10, 464–468 (2013). https://doi.org/10.1016/S1672-6529(13)60240-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(13)60240-1

Keywords

Navigation