Skip to main content
Log in

A chicken’s egg as a reaction vessel to explore biomineralization

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Natural composites, formed through biomineralization, have highly ordered structures which have been aptly explored for functional applications. Though the role of organic phases has been well understood in biomineralization, not enough attention has been paid to the role of bio-membranes which are often found encapsulating the chamber in which mineralization occurs. We have used the natural protein and semi-permeable membrane of chicken eggs to grow different materials such as ceramics, semi-metals and metals to understand the role of bio-membranes in biomineralization. We here report the successful biomimetic synthesis of calcite, cadmium sulphide, and silver having homogeneous morphologies. We have found that the membrane operates like a tuned gateway, playing a significant role in controlling the morphology of the inorganic crystals formed during biomineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford, UK, 2001.

    Google Scholar 

  2. Yang Y, Chen X, Shao Z, Zhou P, Porter D, Kinght D P, Vollrath F. Toughness of spider silk at high and low temperatures. Advanced Materials, 2005, 17, 84–88.

    Article  Google Scholar 

  3. Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A M, Stucky G D, Morse D E, Hansma P K. Molecular mechanics origin of the toughness of natural adhesives, fibers and composites. Nature, 1999, 399, 761–763.

    Article  Google Scholar 

  4. Soten I, Ozin G A. New directions in self-assembly: Materials synthesis over ‘all’ length scales. Current Opinion in Colloid and Interface Science, 1999, 4, 325–337.

    Article  Google Scholar 

  5. Mann S, Heywood B R, Rajam S, Birchall J D. Controlled crystallisation of CaCO3 under stearic acid monolayers. Nature, 1988, 334, 692–695.

    Article  Google Scholar 

  6. Berman A, Addadi L, Kvick A, Leiserowitz L, Nelson M, Weiner S. Intercalation of sea urchin proteins in calcite: Study of a crystalline composite material. Science, 1990, 250, 664–667.

    Article  Google Scholar 

  7. Lowenstam H A. Minerals formed by organisms. Science, 1981, 211, 1126–1131.

    Article  Google Scholar 

  8. Sarashina I, Endo K. Primary structure of a soluble matrix protein of scallop shell: Implications for calcium carbonate biomineralization. American Mineralogist, 1998, 83, 1510–1515.

    Article  Google Scholar 

  9. Ramachandrarao P. Biomimetics. Sādhnā, 2003, 28, 657–676.

    Google Scholar 

  10. Mann S (ed). Biomimetic Materials Chemistry. VCH Publishers, New York, USA, 1996.

    Google Scholar 

  11. Herman A, Addadi L, Weiner S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—A study of intracrystalline proteins. Nature, 1988, 331, 546–548.

    Article  Google Scholar 

  12. Addadi L, Weiner S. Biomineralization — A pavement of pearl. Nature, 1997, 389, 912–915.

    Article  Google Scholar 

  13. Matsuda T, Endo J, Osakabe N, Tonomura A, Arii T. Morphology and structure of biogenic magnetite. Nature, 1983, 302, 411–412.

    Article  Google Scholar 

  14. Jackson A P, Vincent F V, Turner R M. The mechanical design of nacre. Proceedings of Royal Society London (B), Biological Sciences, 1998, 234, 415–440.

    Article  Google Scholar 

  15. Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature, 1993, 365, 499–505.

    Article  Google Scholar 

  16. Liu K, Jia Z, Chen G, Tung C, Liu R. Systematic size study of an insect antifreeze protein and its interaction with ice. Biophysical Journal, 2005, 88, 953–958.

    Article  Google Scholar 

  17. Gilbert P U P A, Abrecht M, Frazer B H. The organic-mineral interface in biominerals. Reviews in Mineralogy and Geochemistry, 2005, 59, 157–185.

    Article  Google Scholar 

  18. Addadi L, Weiner S. Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization. Proceedings of National Academy of Sciences USA, 1985, 82, 4110–4114.

    Article  Google Scholar 

  19. Lakshminarayanan R, Kini R M, Valiyaveettil S. Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proceedings of National Academy of Sciences USA, 2002, 99, 5155–5159.

    Article  Google Scholar 

  20. Cha J N, Stucky G D, Morse D E, Deming T J. Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature, 2000, 403, 289–292.

    Article  Google Scholar 

  21. Mann S, Webb J, Williams R J P (eds). Biomineralization: Chemical and Biochemical Perspectives. VCH Publishers, New York, USA, 1989.

    Google Scholar 

  22. Stucky G D, MacDougall J E. Quantum confinement and the host/guest chemistry: Probing a new dimension. Science, 1998, 247, 669–678.

    Article  Google Scholar 

  23. Douglas T, Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nature, 1998, 393, 152–155.

    Article  Google Scholar 

  24. Whaley S R, English D S, Hu E L, Barbara P F, Belcher A M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000, 405, 665–668.

    Article  Google Scholar 

  25. Brown S. Metal-recognition by repeating polypeptides. Nature Biotechnology, 1997, 5, 269–272.

    Article  Google Scholar 

  26. Sarakaya M, Tamerler C, Jen A K Y, Schulten K, Baneyx F. Molecular biomimetics: Nanotechnology through biology. Nature Materials, 2003, 2, 577–585.

    Article  Google Scholar 

  27. Mann S. Molecular recognition in biomineralization. Nature, 1988, 332, 119–124.

    Article  Google Scholar 

  28. Meldrum F C, Heywood B R, Mann S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science, 1992, 257, 522–523.

    Article  Google Scholar 

  29. Lipowsky R. Pictures from the twilight zone. Nature Materials, 2004, 3, 589–591.

    Article  Google Scholar 

  30. Liang H, Angelini T E, Braun P V, Wong G C L. Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-Membrane templates. Journal of American Chemical Society, 2003, 125, 11786–11787.

    Article  Google Scholar 

  31. Nys Y, Gautron J, Garcia-Ruiz J M, Hinche M T. Avian eggshell mineralization: Biochemical and functional characterization of matrix protein. C R Palevol, 2004, 3, 549–562.

    Article  Google Scholar 

  32. Kikuchi M, Ikoma T, Itoh S, Matsumoto H N, Koyama Y, Takakud K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology, 2004, 64, 819–825.

    Article  Google Scholar 

  33. Waren C W, Nie S. Quantum dot bioconjugates for ultra sensitive nonisotopic detection. Science, 1998, 281, 2016–2018.

    Article  Google Scholar 

  34. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 2007, 18, 225103.

    Article  Google Scholar 

  35. Almqvist N, Thomson N H, Smith B L, Stucky G D, Morse D E, Hansma P K. Methods for fabricating and charactering a new generation of biomimetic materials. Materials Science and Engineering C, 1999, 7, 37–43.

    Article  Google Scholar 

  36. Mann S, Helmut C. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition, 2003, 42, 2350–2365.

    Article  Google Scholar 

  37. Ji B, Gao H. A study of fracture mechanisms in biological nano-composites via the virtual internal bend model. Materials Science and Engineering A. 2004, 366, 96–103.

    Article  Google Scholar 

  38. Heywood B R, Mann S. Template-directed nucleation and growth of inorganic materials. Advanced Materials, 2004, 6, 9–20.

    Article  Google Scholar 

  39. Weiner S, Hood L. Soluble protein of the organic matrix of mollusk shells: A potential template for shell formation. Science, 1975, 190, 987–989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramachandrarao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bera, T., Ramachandrarao, P. A chicken’s egg as a reaction vessel to explore biomineralization. J Bionic Eng 4, 133–141 (2007). https://doi.org/10.1016/S1672-6529(07)60025-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(07)60025-0

Keywords

Navigation