Skip to main content
Log in

Critical Shear Offset of Fracture in a Zr-based Metallic Glass

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The nanoscale shear band operation process of Zr55Pd10Cu20Ni5 Al10 metallic glass (MG) was reined in by constant force during well-designed loading-holding-unloading cyclic microcompression test. Through the test, it is revealed that the whole shear banding process involves three stages: shear band initiation, shear sliding and shear band arrest. Based on the energy balance principle, the size-affected speed of shear sliding is interpreted. The energy originated from the shear sliding leads to heat-up of the shear plane; therefore, the temperature in shear band increases with the size of shear offset caused by the energy accumulation during shear sliding. Taking the glass transition temperature as the critical temperature of fracture for the Zr-based MG, the critical shear offset is predicted to be approximately 190 μm, fully in line with the experimental observation. This directly proved that the fracture of the MG is caused by the temperature rise during shear sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Plummer, W. L. Johnson, Nat. Mater. 14 (2015) 553–555.

    Article  Google Scholar 

  2. W. H. Wang, C. Dong, C. H. Shek, Mater. Sci. Eng. R-Rep. 44 (2004) 45–89.

    Article  Google Scholar 

  3. A. L. Greer, Science 267 (1995) 1947–1953.

    Article  Google Scholar 

  4. C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067–4109.

    Article  Google Scholar 

  5. J. J. Lewandowski, A. L. Greer, Nat. Mater. 5 (2006) 15–18.

    Article  Google Scholar 

  6. D. Klaumunzer, A. Lazarev, R. Maaß, F. H. D. Torre, A. Vinogradov, J. F. Loffler, Phys. Rev. Lett. 107 (2011) 185502.

    Article  Google Scholar 

  7. F.F. Wu, Z. F. Zhang, J. Shen, S. X. Mao, Acta Mater. 56 (2008) 894–904.

    Article  Google Scholar 

  8. Y. Zhang, A. L. Greer, Appl. Phys. Lett. 89 (2006) 071907.

    Article  Google Scholar 

  9. A. J. Cao, Y. Q. Cheng, E. Ma, Acta Mater. 57 (2009) 5146–5155.

    Article  Google Scholar 

  10. Z. Y. Liu, Y. Yang, C.T. Liu, Appl. Phys. Lett. 99 (2011) 171904.

    Article  Google Scholar 

  11. R. D. Conner, Y. Li, W. D. Nix, W. L. Johnson, Acta Mater. 52 (2004) 2429–2434.

    Article  Google Scholar 

  12. F. F. Wu, Z. F. Zhang, J. Shen, S. X. Mao, J. Mater. Res. 23 (2008) 2662–2667.

    Article  Google Scholar 

  13. B. Yang, C. T. Liu, T. G. Nieh, M. L. Morrison, P. K. Liaw, R. A. Buchanan, J. Mater. Res. 21 (2006) 915–922.

    Article  Google Scholar 

  14. W. J. Wright, R. B. Schwarz, W. D. Nix, Mater. Sci. Eng. A 319 (2001) 229–232.

    Article  Google Scholar 

  15. D. B. Miracle, A. Concustell, Y. Zhang, A. R. Yavari, A. L. Greer, Acta Mater. 59 (2011) 2831–2840.

    Article  Google Scholar 

  16. H. Zhang, B. E. Schuster, Q. Wei, K. T. Ramesh, Scripta Mater. 54 (2006) 181–186.

    Article  Google Scholar 

  17. Z. Y. Liu, Y. Yang, C. T. Liu, Acta Mater. 61 (2013) 5928–5936.

    Article  Google Scholar 

  18. Y. Q. Cheng, Z. Han, Y. Li, E. Ma, Phys. Rev. B 80 (2009) 134115.

    Article  Google Scholar 

  19. Y. Yang, J. C. Ye, J. Lu, C. T. Liu, Intermetallics 19 (2011) 1005–1013.

    Article  Google Scholar 

  20. C. J. Gilhert, J. W. Ager, V. Schroeder, R. O. Ritchie, J. P. Lloyd, J. R. Graham, Appl. Phys. Lett. 74 (1999) 3809–3811.

    Article  Google Scholar 

  21. Y. H. Liu, C. T. Liu, A. Gali, A. Inoue, M. W. Chen, Intermetallics 18 (2010) 1455–1464.

    Article  Google Scholar 

  22. B. A. Sun, S. Pauly, J. Tan, M. Stoica, W. H. Wang, U. Kühn, J. Eckert, Acta Mater. 60 (2012) 4160–4171.

    Article  Google Scholar 

  23. S. X. Song, T. G. Nieh, Intermetallics 19 (2011) 1968–1977.

    Article  Google Scholar 

  24. J. W. Qiao, H. L. Jia, Y. Zhang, P. K. Liaw, L. F. Li, Mater. Chem. Phys. 136 (2012) 75–79.

    Article  Google Scholar 

  25. S. X. Song, H. Bei, J. Wadsworth, T. G. Nieh, Intermetallics 16 (2008) 813–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yuan Liu.

Additional information

Foundation Item: Item Sponsored by Natural Science Foundation of Guangdong Province of China (2014A030310189); Shenzhen Senior Talent Research Start-up Funding of China (827000056); General Research Fund from Research Grant Council of Hong Kong Government of China (CityU 102013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zy., Yang, Y. & Liu, Ct. Critical Shear Offset of Fracture in a Zr-based Metallic Glass. J. Iron Steel Res. Int. 23, 53–56 (2016). https://doi.org/10.1016/S1006-706X(16)30011-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30011-5

Key words

Navigation