Skip to main content
Log in

Self-organized Criticality Behavior in Bulk Metallic Glasses

  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Serrated flows are known as repeated yielding of bulk metallic glasses (BMGs) during plastic deformation under different loading conditions, which are associated with the operation of shear banding. According to the statistics of some parameters, the shear avalanches can display a self-organized critical state, suggesting a large ductility of BMGs. The emergence of the self-organized criticality (SOC) behavior in different BMGs is due to the temperature, strain rate, and chemical compositions. The SOC behavior is accompanied with the following phenomena: the interactions occur in the shear bands; the incubation time is longer than the relaxation time; the time interval is lacking of typical time scale; and the spatial or temporal parameters should display a power-law distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. W. Chen, Annu. Rev. Mater. Res. 38 (2008) 445–469.

    Article  Google Scholar 

  2. M. F. Ashby, A. L. Greer, Scripta Mater. 54 (2006) 321–326.

    Article  Google Scholar 

  3. H. Chen, Y. He, G. J. Shiflet, S. J. Poon, Nature 367 (1994) 541–543.

    Article  Google Scholar 

  4. B. A. Sun, S. Pauly, J. Hu, W. H. Wang, U. Kühn, J. Eckert, Phys. Rev. Lett. 110 (2013) 225–501.

    Google Scholar 

  5. Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, Science 315 (2007) 1385–1388.

    Article  Google Scholar 

  6. F. Spaepen, Acta Metall. 25 (1977) 407–415.

    Article  Google Scholar 

  7. A. S. Argon, L. T. Shi, Philos. Mag. A 46 (1982) 275–294.

    Article  Google Scholar 

  8. K. Maeda, S. Takeuchi, Phys. Status. Solidi. A 49 (1978) 685–696.

    Article  Google Scholar 

  9. A. S. Argon, Acta Metall. 27 (1979) 47–58.

    Article  Google Scholar 

  10. C.A. Schuh, T. C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067–4109.

    Article  Google Scholar 

  11. M. L. Falk, J. S. Langer, Phys. Rev. E 57 (1998) 7192–7205.

    Article  Google Scholar 

  12. J. S. Langer, Phys. Rev. E 64 (2001) 011504.

    Article  Google Scholar 

  13. W. L. Johnson, K. Samwer, Phys. Rev. Lett. 95 (2005) 195501.

    Article  Google Scholar 

  14. M. Koslowski, R. Lesar, R. Thomson, Phys. Rev. Lett. 93 (2004) 125502.

    Article  Google Scholar 

  15. J. Weiss, D. Marsan, Science 299 (2003) 89–92.

    Article  Google Scholar 

  16. R. Sarmah, G. Ananthakrishna, B. A. Sun, W. H. Wang, Acta Mater. 59 (2011) 4482–4493.

    Article  Google Scholar 

  17. G. Wang, K. C. Chan, L. Xia, P. Yu, J. Shen, W. H. Wang, Acta Mater. 57 (2009) 6146–6155.

    Article  Google Scholar 

  18. J. Antonaglia, W. J. Wright, X. J. Gu, R. R. Byer, T. C. Hufnagel, M. LeBlanc, J. T. Uhl, K. A. Dahmen, Phys. Rev. Lett. 112 (2014) 155501.

    Article  Google Scholar 

  19. J. W. Qiao, Y. Zhang, P. K. Liaw, Intermetallics 18 (2010) 2057–2064.

    Article  Google Scholar 

  20. B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, W. H. Wang, Phys. Rev. Lett. 105 (2010) 035501.

    Article  Google Scholar 

  21. Z. Wang, J. W. Qiao, H. J. Yang, P. K. Liaw, C. J. Huang, L. F. Li, Metall. Mater. Trans. A 46 (2015) 2404–2414.

    Article  Google Scholar 

  22. H. B. Ke, B. A. Sun, C. T. Liu, Y. Yang, Acta Mater. 63 (2014) 180–190.

    Article  Google Scholar 

  23. J. Antonaglia, X. Xie, G. Schwarz, M. Wraith, J. W. Qiao, Y. Zhang, P. K. Liaw, J. T. Uhl, K. A. Dahmen, Sci. Rep. 4 (2014) 4382.

    Article  Google Scholar 

  24. J. L. Ren, C. Chen, Z. Y. Liu, R. Li, G. Wang, Phys. Rev. B 86 (2012) 134303.

    Article  Google Scholar 

  25. Z.Y. Liu, G. Wang, K. C. Chan, J. L. Ren, Y. J. Huang, X. L. Bian, X. H. Xu, D. S. Zhang, Y. L. Gao, Q. J. Zhai, J. Appl. Phys. 114 (2013) 033521.

    Article  Google Scholar 

  26. P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1996) 4083–4086.

    Article  Google Scholar 

  27. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38 (1988) 364–374.

    Article  MathSciNet  Google Scholar 

  28. R. F. Voss, J. Clarke, Phys. Rev. B 13 (1976) 556–573.

    Article  Google Scholar 

  29. K. L. Schick, A. A. Verveen, Nature 251 (1974) 599–601.

    Article  Google Scholar 

  30. J. L. Ren, C. Chen, G. Wang, N. Mattern, J. Eckert, AIP Adv. 1 (2011) 032158.

    Article  Google Scholar 

  31. A. Porteevin, F. Le Chatelier, G R. Acad. Sci. Paris 176 (1923) 507–510.

    Google Scholar 

  32. G. Ananthakrishna, Phys. Rep. 440 (2007) 113–259.

    Article  MathSciNet  Google Scholar 

  33. M. S. Bharathi, M. Lebyodkin, G. Ananthakrishna, C. Fres-sengeas, L. P. Kubin, Phys. Rev. Lett. 87 (2001) 165508.

    Article  Google Scholar 

  34. J.J. Lewandowski, A. L. Greer, Nat. Mater. 5 (2006) 15–18.

    Article  Google Scholar 

  35. H. J. Leamy, H. S. Chen, T. T. Wang, Metall. Trans. 3 (1972) 699–708.

    Article  Google Scholar 

  36. A. L. Greer, Y. Q. Cheng, E. Ma, Mater. Sci. Eng. R 74 (2013) 71–132.

    Article  Google Scholar 

  37. M. Q. Jiang, Z. Ling, J. X. Meng, L. H. Dai, Philos. Mag. 88 (2008) 407–426.

    Article  Google Scholar 

  38. M. Q. Jiang, G. Wilde, J. H. Chen, C. B. Qu, S. Y. Fu, F. Jiang, L. H. Dai, Acta Mater. 77 (2014) 248–257.

    Article  Google Scholar 

  39. R. A. Sun, S. Pauly, J. Tan, M. Stoica, W. H. Wang, U. Kühn, J. Eckert, Acta Mater. 60 (2012) 4160–4171.

    Article  Google Scholar 

  40. J.W. Qiao, Z. Wang, H. J. Yang, M. Li, W. Liang, B.S. Xu, AIP Adv. 3 (2013) 032105.

    Article  Google Scholar 

  41. R. Maaß, J. F. Löffler, Adv. Fun. Mater. 25 (2015) 2353–2368.

    Article  Google Scholar 

  42. Z. Wang, J. W. Qiao, G. Wang, K. A. Dahmen, P. K. Liaw, Z. H. Wang, B. C. Wang, B. S. Xu, Mater. Sci. Eng. A 639 (2015) 661–670.

    Google Scholar 

  43. Y. Fan, T. Iwashita, T. Egami, Nat. Com. 5 (2014) 5083.

    Article  Google Scholar 

  44. Y. Q. Cheng, E. Ma, Phys. Rev. B 80 (2009) 064104.

    Article  Google Scholar 

  45. J. W. Qiao, H. L. Jia, C P. Chuang, E. W. Huang, G. Y. Wang, P. K. Liaw, Y. Ren, Y. Zhang, Scripta Mater. 63 (2010) 871–874.

    Article  Google Scholar 

  46. L. C. Zhang, F. Jiang, Y. L. Zhao, J. F. Zhang, L. He, J. Sun, Mater. Sci. Eng. A 527 (2010) 4122–4127.

    Article  Google Scholar 

  47. B. Yang, M. L. Morrison, P. K. Liaw, R. A. Buchanan, G. Y. Wang, C.T. Liu, M. Denda, Appl. Phys. Lett. 86 (2005) 141904.

    Article  Google Scholar 

  48. B. Yang, P. K. Liaw, G. Wang, M. Morrison, C. T. Liu, R. A. Buchanan, Y. Yokoyama, Intermetallics 12 (2004) 1265–1274.

    Article  Google Scholar 

  49. J. W. Qiao, H. L. Jia, Y. Zhang, P. K. Liaw, L. F. Li, Mater. Chem. Phys. 136 (2012) 75–79.

    Article  Google Scholar 

  50. F. Shimizu, S. Ogata, J. Li, Acta Mater. 54 (2006) 4293–4298.

    Article  Google Scholar 

  51. S. V. Ketov, D. V. Louzguine-Luzgin, Sci. Rep. 3 (2013) 2798.

    Article  Google Scholar 

  52. B. Yang, C. T. Liu, T. G. Nieh, M. L. Morrison, P. K. Liaw, R. A. Buchanan, J. Mater. Res. 21 (2006) 915–922.

    Article  Google Scholar 

  53. A. J. Cao, Y. Q. Cheng, E. Ma, Acta Mater. 57 (2009) 5146–5155.

    Article  Google Scholar 

  54. S. X. Song, T. G. Nieh, Intermetallics 17 (2009) 762–767.

    Article  Google Scholar 

  55. Y. Q. Cheng, Z. Han, Y. Li, E. Ma, Phys. Rev. B 80 (2009) 134115.

    Article  Google Scholar 

  56. M. C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J. R. Grasso, Nature 410 (2001) 667–671.

    Article  Google Scholar 

  57. E. Faran, E. K. H. Salje, D. Shilo, Appl. Phys. Lett. 107 (2015) 071902.

    Article  Google Scholar 

  58. T. Niiyama, T. Shimokawa, Phys. Rev. E 91 (2015) 022401.

    Article  Google Scholar 

  59. T. Mäkinen, A. Miksic, M. Ovaska, M. J. Alava, Phys. Rev. Lett. 115 (2015) 055501.

    Article  Google Scholar 

  60. E. K. H. Salje, D. E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, W. Schranz, Philos. Mag. Lett. 91 (2011) 554–560.

    Article  Google Scholar 

  61. J. Baro, A. Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra, E. Vives, Phys. Rev. Lett. 110 (2013) 088702.

    Article  Google Scholar 

  62. A. Guarino, A. Garcimartin, S. Ciliberto, Eur. Phys. J. B. 6 (1998) 13–24.

    Article  Google Scholar 

  63. G. F. Nataf, P. O. Castillo-Villa, J. Baro, X. Illa, E. Vives, A. Planes, E. K. H. Salje, Phys. Rev. E 90 (2014) 022405.

    Article  Google Scholar 

  64. F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318 (2007) 251–254.

    Article  Google Scholar 

  65. D. L. Malandro, D. L. Lacks, J. Chem. Phys. 110 (1999) 4593–4601.

    Article  Google Scholar 

  66. A. S. Argon, Philos. Mag. 93 (2013) 3795–3808.

    Article  Google Scholar 

  67. Y. Fan, T. Iwashita, T. Egami, Phys. Rev. Lett. 115 (2015) 045501.

    Article  Google Scholar 

  68. D. Tönnies, R. Maaß, C.A. Volkert, Adv. Mater. 26 (2014) 5715–5721.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-wei Qiao.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51371122); Program for the Innovative Talents of Higher Learning Institutions of Shanxi of China (2013); The Youth Natural Science Foundation of Shanxi Province of China (2015021005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Jw., Wang, Z. Self-organized Criticality Behavior in Bulk Metallic Glasses. J. Iron Steel Res. Int. 23, 7–13 (2016). https://doi.org/10.1016/S1006-706X(16)30003-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30003-6

Key words

Navigation