Skip to main content
Log in

A coupled thermodynamic model for prediction of inclusions precipitation during solidification of heat-resistant steel containing cerium

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A coupled thermodynamic model of inclusions precipitation both in liquid and solid phase and microsegregation of solute elements during solidification of heat-resistant steel containing cerium was established. Then the model was validated by the SEM analysis of the industrial products. The type and amount of inclusions in solidification structure of 253MA heat-resistant steel were predicted by the model, and the valuable results for the inclusions controlling in 253MA steel were obtained. When the cerium addition increases, the types of inclusions transform from SiO2 and MnS to Ce2O3 and Ce2O2S in 253MA steel and the precipitation temperature of SiO2 and MnS decreases. The inclusions CeS and CeN convert to Ce2O3 and Ce2O2S as the oxygen content increases and Ce2O3 and CeN convert to Ce2O2S, Ce3S4, and MnS as the sulfur content increases. The formation temperature of SiO2 increases when the oxygen content increases and the MnS precipitation temperature increases when the sulfur content increases. There is only a small quantity of inclusions containing cerium in 253MA steel with high cleanliness, i. e., low oxygen and sulfur contents. By contrast, a mass of SiO2, MnS and Ce2O2S are formed in steel when the oxygen and sulfur contents are high enough. The condition that MnS precipitates in 253MA steel is 1. 2w[O] + w[S] > 0.01 % and SiO2 precipitates when 2w[O] + w[S] > 0. 017% (w[S] < 0.005%) and w[O] > 0.006% (w[S] > 0.005%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

fi:

Activity coefficient

e ji :

First-order interaction parameter

γ ji , γ j,ki :

Second-order interaction parameters

w[Cj], w[Ck]:

Mass fraction of components j and k, standard state

CL:

Solute concentration in liquid, standard state

CS:

Solute concentration in solid, standard state

C[C]:

Concentration of carbon, standard state

C0:

Solute concentration in each step, standard state

C0(total):

Total solute concentration, standard state

C0(inclusions):

Solute concentration in inclusions, standard state

ΔGθ:

Standard Gibbs free energy

ΔG:

Gibbs free energy

A, B:

Constants for describing Gibbs free energy

R:

Ideal gas constant, J/(mol • K)

T:

Temperature, K

TL, TS:

Temperature of liquidus and solidus, K

Tstart, Tend:

Temperature of start and end of calculation, K

DS:

Diffusion coefficient, m2/s

α:

A constant related to the secondary dendrite arm space

α′:

Revised α

τ:

Distribution coefficient

τγ/L:

Distribution coefficient between austenite phase and liquid phase

D γS :

Diffusion coefficient in austenite phase

fS:

Solid fraction

λ:

Secondary dendrite arm space, m

Φ:

Solidification rate, K/s

tS:

Local solidification time, s

References

  1. Y. K. Yao, M. W. Zhu, D. Y. Wang, C. J. Liu, M. F. Jiang, Chinese Rare Earth 25 (2004) No. 5, 17–19.

    Google Scholar 

  2. S. C. Zhao, F. Y. Shen, Q. Y. Han, G. L. Shao, Iron and Steel 17 (1982) No. 3, 24–31.

    Google Scholar 

  3. Z. S. Yu, W. Z. Zhao, Y. F. Xie, Q. H. Yu, Iron and Steel 19 (1984) No. 3, 18–24.

    Google Scholar 

  4. N. Kojola, S. Ekerot, M. Andersson, P. G. Jönsson, Ironmak. Steelmak. 38 (2011) 1–11.

    Article  Google Scholar 

  5. I. H. Jung, S. A Decterov, A. D. Pelton, Metall. Mater. Trans. B 35 (2004) 493–507.

    Article  Google Scholar 

  6. S. Choudhary, A. Ghosh, ISIJ Int. 49 (2009) 1819–1827.

    Article  Google Scholar 

  7. Z. Z. Liu, K. J. Gu, K. K. Cai, ISIJ Int. 42 (2002) 950–957.

    Article  Google Scholar 

  8. H. Q. Zhang, S. B. Zheng, Q. Zheng, Z. L. Liu, G. C. Jiang, Acta Metall. Sin. 42 (2006) 745–750.

    Google Scholar 

  9. C. J. Liu, L. Fang, Y. S Wang, M. F. Jiang, J. Northeast. Univ. Nat. Sci. 28 (2007) 1410–1413.

    Google Scholar 

  10. R. J. Fruehan, Metall. Mater. Trans. B 10 (1979) 143–148.

    Article  Google Scholar 

  11. A. Vahed, D. Kay, Mater. Trans. B 7 (1976) 375–383.

    Article  Google Scholar 

  12. V. R. Kalakota, Sulfur Removal Using Regenerahle Sorhents of Rare Earth/Transition Metal Oxides, Andhra University, Baton Rouge, 2008.

    Google Scholar 

  13. H. C. Wang, Y. C. Dong, Measurement and Calculation Methods of Metallurgical Thermodynamic Data, Metallurgical Industry Press, Beijing, 2005.

    Google Scholar 

  14. N. Toker, L. Darken, A. Muan, Mater. Trans. B 22 (1991) 689–703.

    Article  Google Scholar 

  15. S. Luo, M. Y. Zhu, C. Cai, Z. Z. Cai, Iron and Steel 45 (2010) No. 6, 31–36.

    Google Scholar 

  16. E. B. Yue, S. T. Chou, Y. Gan, J. Iron Steel Res. 18 (2006) No. 8, 49–52.

    Google Scholar 

  17. M. C. Zhang, S. D. Li, Q. Y. Zhang, J. P. Zhang, Journal Anhui University of Technology 29 (2012) 207–210.

    Google Scholar 

  18. G. B. Tang, X. Y. Wu, X. Yong, A. M. Bai, Z. D. Liu, Q. L. Yong, Heat Treatment Metals 33 (2008) No. 8, 67–72.

    Google Scholar 

  19. T. Clyne, W. Kurz, Mater. Trans. A 12 (1981) 965–971.

    Article  Google Scholar 

  20. X. Y. Zhong, H. Q. Hu, C. M. Liu, J. Univ. Sci. Technol. Beijing (1984) No. 3, 16–21.

  21. M. Wolf, Metall. Plant Technol. (1983) No. 2, 46–59.

  22. R. Diederichs, W. Bleck, Steel Res. Int. 77 (2006) 202–209.

    Article  Google Scholar 

  23. Y. M. Won, B. G. Thomas, Mater. Trans. A 32 (2001) 1755–1767.

    Article  Google Scholar 

  24. A. C. Tas, M. Akinc, J. Am. Ceram. Soc. 76 (1993) 1595–1601.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-dong Li.

Additional information

Foundation Item: Item Sponsored by National Key Basic Research Program of China (2012CB626812); National Natural Science Foundation of China (51104039); Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0077)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yd., Liu, Cj., Li, Cl. et al. A coupled thermodynamic model for prediction of inclusions precipitation during solidification of heat-resistant steel containing cerium. J. Iron Steel Res. Int. 22, 457–463 (2015). https://doi.org/10.1016/S1006-706X(15)30027-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(15)30027-3

Key words

Navigation