Skip to main content
Log in

Host-parasite dynamics and the evolution of host immunity and parasite fecundity strategies

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We explore evolutionarily stable co-evolution of host-macroparasite interactions in a discrete-time two-species population dynamics model, in which the dynamics may be stable, cyclic or chaotic. The macroparasites are assumed to harm host individuals through decreased reproductive output. Hosts may develop costly immune responses to defend themselves against parasites. Parasites compete with conspecifics by adjusting their fecundities. Overall, the presence of both parasites and the immune response in hosts produces more stable dynamics and lower host population sizes than that observed in the absence of the parasites. In our evolutionary analyses, we show that maximum parasite fecundity is always an evolutionarily stable strategy (ESS), irrespective of the type of population interaction, and that maximum parasite fecundity generally induces a minimum parasite population size through over-exploitation of the host. Phenotypic polymorphisms with respect to immunity in the host species are common and expected in ESS host strategies: the benefits of immunication depend on the frequency of the immune hosts in the population. In particular, the steady-state proportions of immune hosts depend, in addition to all the parameters of the parasite dynamics only on the cost of immunity and on the virulence of parasites in susceptible hosts. The implicit ecological dynamics of the host-parasite interaction affect the proportion of immune host individuals in the population. Furthermore, when changes in certain population parameters cause the dynamics of the host-parasite interaction to move from stability to cyclicity and then to chaos, the proportion of immune hosts tends to decrease; however, we also detected counter-examples to this result. As a whole, incorporating immunological and genetic aspects, as well as life-history trade-offs, into host-macroparasite dynamics produces a rich extension to the patterns observed in the models of ecological interactions and epidemics, and deserves more attention than is currently the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M. and R. M. May. 1978. Regulation and stability of host-parasite population interactions. I. Regulatory processes.J. Anim. Ecol.,47, 219–247.

    Article  Google Scholar 

  • Anderson, R. M. and R. M. May. 1991.Infectious Diseases of Humans. Dynamics and Control. New York: Oxford University Press.

    Google Scholar 

  • Bellows, T. S. J. 1981. The descriptive properties of some models for density dependence.J. Anim. Ecol. 50, 139–156.

    Article  MathSciNet  Google Scholar 

  • Beverton, R. J. H. and S. J. Holt. 1957. On the dynamics of exploited populations.Fishery Investment Series 2, Vol. 19. London: U. K. Ministry of Agriculture and Fisheries.

    Google Scholar 

  • Bremermann, H. J. and J. Pickering. 1983. A game-theoretic model of parasite virulence.J. Theor. Biol. 100, 411–426.

    Article  MathSciNet  Google Scholar 

  • Edelstein-Keshet, L. 1988.Mathematical Models in Biology. New York: Random House.

    MATH  Google Scholar 

  • Ferrière, R. and M. Gatto. 1995. Lyapunov exponents and the mathematics of invasion in oscillatory and chaotic populations.Theor. Popul. Biol. 48, 126–171.

    Article  MATH  Google Scholar 

  • Frank, S. A. 1992. A kin selection model for the evolution of virulence.Proc. Roy. Soc. London Ser. B 250, 195–197.

    Google Scholar 

  • Gatto, M. 1993. The evolutionary optimality of oscillatory and chaotic population dynamics in simple population models.Theor. Popul. Biol. 43, 310–336.

    Article  MATH  Google Scholar 

  • Getz, W. M. 1996. A hypothesis regarding the abruptness of density dependence and the growth rate of populations.Ecology 77, 2014–2026.

    Article  Google Scholar 

  • Gregory, R. D., A. E. Keymer and J. R. Clarke. 1990. Genetics, sex and exposure: the ecology ofHeligmosomoides polygurus (Nematoda) in the wood mouse.J. Anim. Ecol. 59, 363–378.

    Article  Google Scholar 

  • Haldane, J. B. S. 1949. Disease and evolution.La Ricerca Sci. Suppl.,19, 68–76.

    Google Scholar 

  • Hassell, M. P. 1978.The Dynamics of Arthropod Predator-Prey Systems.Monographs in Population Biology, Vol. 13. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Heesterbeek, J. A. P. and M. G. Roberts. 1995. Mathematical models for microparasites of wildlife. In:Ecology of Infectious Diseases in Natural Populations, B. T. Grenfell and A. P. Dobson (Eds), pp. 90–122. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kaitala, A., V. Kaitala and P. Lundberg. 1993. A theory of partial migration.Am. Nat. 142 59–81.

    Article  Google Scholar 

  • Kaitala, V. and W. M. Getz. 1995. Population dynamics and harvesting of semelparous species with phenotypic and genotypic variability in reproductive age.J. Math. Biol. 33, 521–556.

    Article  MATH  Google Scholar 

  • Kaitala, V. and M. Heino. 1996. Complex non-unique dynamics in simple ecological interactions.Proc. Roy. Soc. London Ser. B 263, 1011–1015.

    Google Scholar 

  • Kaitala, V., A. Kaitala and W. M. Getz. 1989. Evolutionary stable dispersal of a waterstrider in a temporally and spatially heterogeneous environment.Evol. Ecol. 3, 283–298.

    Article  Google Scholar 

  • Keymer, A. E., A. B. Tarlton, R. W. Hiorns, C. E. Lawrence and D. I. Pritchard. 1990. Immunogentic correlates of susceptibility to infection withHeligmosomoides polygyrus in outbread mice.Parasitology 101, 69–73.

    Article  Google Scholar 

  • Knolle, H. 1989. Host density and the evolution of parasite virulence.J. Theor. Biol. 136, 199–207.

    Article  MathSciNet  Google Scholar 

  • Maizels, R. M., D. A. P. Bundy, M. E. Selkirk, D. F. Smith and R. M. Anderson. 1993. Immunological modulation and evasion by helminth parasites in human populations.Nature 365, 797–805.

    Article  Google Scholar 

  • May, R. M. 1974. Biological populations with non-overlapping generations: stable points, stable cycles and chaos.Science 186, 645–647.

    Google Scholar 

  • May, R. M. 1976. Simple mathematical models with very complicated dynamics.Nature 261, 459–467.

    Article  Google Scholar 

  • May, R. M. 1978. Host-parasitoid systems in patchy environments: a phenomenological model.J. Anim. Ecol. 47, 833–843.

    Article  Google Scholar 

  • May, R. M. and R. M. Anderson. 1978. Regulation and stability of host-parasite population interactions. II. Destabilizing processes.J. Anim. Ecol. 47, 249–267.

    Article  Google Scholar 

  • Maynard Smith, J. and M. Slatkin. 1973. The stability of predator-prey systems.Ecology 54, 384–391.

    Article  Google Scholar 

  • Peitgen, H.-O., H. Jürgens and D. Saupe. 1992.Chaos and Fractals. New Frontiers of Science. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Rand, D. A., H. B. Wilson and J. M. McGlade. 1994. Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotypic dynamics.Phil. Trans. Roy. Soc. London Ser. B 343, 261–283.

    Google Scholar 

  • Read, A. F.. 1995. Genetics and evolution of infectious diseases in natural populations. Group report. InEcology of Infectious Diseases in Natural Populations, B. T. Grenfell and A. P. Dobson (Eds), pp. 450–477. Cambridge: Cambridge University Press.

    Google Scholar 

  • Roberts, M. G., G. Smith and B. T. Grenfell. 1995. Mathematical models for macroparasites of wildlife. InEcology of Infectious Diseases in Natural Populations, B. T. Grenfell and A. P. Dobson (Eds), pp. 177–208. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ross, R. 1915. Some a priori pathometric equations.Brit. Med. J. 1, 546–547.

    Article  Google Scholar 

  • Ross, R. 1916. An application of the theory of probabilities to the study of a priori pathometry, I.Proc. Roy. Soc. London Ser. A 92, 204–230.

    MATH  Google Scholar 

  • Ross, R. and H. P. Hudson. 1917. An application of the theory of probabilities to the study of a priori pathometry, II.Proc. Roy, Soc. London Ser. A 93, 212–225.

    MATH  Google Scholar 

  • Schad, G. A. and R. M. Anderson. 1985. Predisposition to hookworm infection in humans.Science 228, 1537–1540.

    Google Scholar 

  • Sheldon, B. C. and S. Verhulst. 1996. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology.Trends Ecol. Evol. 11, 317–321.

    Article  Google Scholar 

  • Shepherd, J. G. 1982. A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves.J. Cons. Int. Explor. Mer. 40, 67–75.

    Google Scholar 

  • Taylor, P. D. 1989. Evolutionary stability in one-parameter models under weak selection.Theor. Popul. Biol. 36, 125–143.

    Article  MATH  Google Scholar 

  • Vincent, T. L. and J. S. Brown. 1984. Stability in an evolutionary game.Theor. Popul. Biol. 26, 408–427.

    Article  MATH  MathSciNet  Google Scholar 

  • Vincent, T. L. and J. S. Brown. 1987. Evolution under nonequilibrium dynamics.Math. Model. 8, 766–771.

    Article  MATH  MathSciNet  Google Scholar 

  • Vincent, T. L. and J. S. Brown. 1988. The evolution of ESS theory.Ann. Rev. Ecol. Syst. 19, 423–443.

    Article  Google Scholar 

  • Wakelin, D. 1992. Immunogentic and evolutionary influences on the host-parasite relationship.Dev. Comp. Immunol.,16, 345–353.

    Article  MathSciNet  Google Scholar 

  • Wassom, D. L., V. M. Guss and A. W. Grundmann. 1973. Host resistance in a natural host-parasite system. Resistance toHymenolepsis citelli byPeromyscus maniculatus.J. Parasitol. 59, 117–121.

    Article  Google Scholar 

  • Wassom, D. L., C. W. DeWitt and A. W. Grundmann. 1974. Immunity toHymenolepsis citelli byPeromyscus maniculatus: genetic control and ecological implications.J. Parasitol. 60, 47–52.

    Article  Google Scholar 

  • Wassom, D. L., T. A. Dick, N. Arnason, D. Strickland and A. W. Grundmann. 1986. Host genetics: a key factor regulating the distribution of parasites in natural host populations.J. Parasitol. 72, 334–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veijo Kaitala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaitala, V., Heino, M. & Getz, W.M. Host-parasite dynamics and the evolution of host immunity and parasite fecundity strategies. Bltn Mathcal Biology 59, 427–450 (1997). https://doi.org/10.1007/BF02459459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459459

Keywords

Navigation