Original Article
Site-Directed Mutagenesis Improves the Transduction Efficiency of Capsid Library-Derived Recombinant AAV Vectors

https://doi.org/10.1016/j.omtm.2020.03.007Get rights and content
Under a Creative Commons license
open access

Recombinant adeno-associated virus (rAAV) vectors selected from capsid libraries present enormous advantages in high selectivity of tissue tropism and their potential use in human gene therapy applications. For example, rAAV-LK03, was used in a gene therapy trial for hemophilia A (ClinicalTrials.gov: NCT03003533). However, high doses in patients resulted in severe adverse events and subsequent loss of factor VIII (FVIII) expression. Thus, additional strategies are needed to enhance the transduction efficiency of capsid library-derived rAAV vectors such that improved clinical efficacy can be achieved at low vector doses. In this study, we characterized two commonly used library-derived rAAV vectors, rAAV-DJ and rAAV-LK03. It was concluded that rAAV-DJ shared similar transport pathways (e.g., cell surface binding, endocytosis-dependent internalization, and cytoplasmic trafficking) with rAAV serotype 2, while rAAV-LK03 and rAAV serotype 3 shared similar transport pathways. We then performed site-directed mutagenesis of surface-exposed tyrosine (Y), serine (S), aspartic acid (D), and tryptophan (W) residues on rAAV-DJ and rAAV-LK03 capsids. Our results demonstrated that rAAV-DJ-S269T and rAAV-LK03-Y705+731F variants had significantly enhanced transduction efficiency compared to wild-type counterparts. Our studies suggest that the strategy of site-directed mutagenesis should be applicable to other non-natural AAV variants for their optimal use in human gene therapy.

Keywords

gene therapy
rAAV vector
library selection
site-directed mutagenesis
transduction efficiency
vector distribution
hepatocellular carcinoma
cancer targeting

Cited by (0)

10

These authors contributed equally to this work.

11

Present address: Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.