Comptes Rendus
(Loop) quantum gravity and the inflationary scenario
[Cosmologie quantique (à boucle) et paradigme inflationnaire]
Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 1012-1017.

La gravité quantique, en tant que théorie fondamentale de l'espace-temps, est supposée fournir des scénarios décrivant le début de l'univers, peut-être pendant ou avant une ère inflationnaire. Elle a alors pu laisser des signatures potentiellement observables (mais probablement minuscules) dans les grandes structures, qui semblent être en bon accord avec les prédictions des modèles d'inflation. Une recherche systématique visant à dériver ces petits effets dans le cadre d'une théorie quantique de la gravitation, la gravitation quantique à boucle, s'est heurtée à des obstacles inattendus. Ces modèles sont incomplets, et il n'est pas évident que la théorie quantique à boucle soit cohérente en tant que théorie complète. Mais des effets surprenants, qui modifieraient radicalement notre conception de l'espace-temps à grande densité, semblent être génériques. Ces nouveaux effets à grande courbure sont la conséquence d'un décalage grandissant entre la gravité quantique et la théorie quantique des champs ordinaires en espace-temps courbe.

Quantum gravity, as a fundamental theory of space-time, is expected to reveal how the universe may have started, perhaps during or before an inflationary epoch. It may then leave a potentially observable (but probably miniscule) trace in cosmic large-scale structures that seem to match well with predictions of inflation models. A systematic quest to derive such tiny effects using one approach, loop quantum gravity, has, however, led to unexpected obstacles. Such models remain incomplete, and it is not clear whether loop quantum gravity can be consistent as a full theory. But some surprising effects appear to be generic and would drastically alter our understanding of space-time at large density. These new high-curvature phenomena are a consequence of a widening gap between quantum gravity and ordinary quantum-field theory on a background.

Publié le :
DOI : 10.1016/j.crhy.2015.08.007
Keywords: Quantum cosmology, Space-time, Effective theory, Anomalies
Mot clés : Cosmologie quantique, Espace-temps, Théorie efficace, Anomalies
Martin Bojowald 1

1 Department of Physics, The Pennsylvania State University, 104 Davey Lab, University Park, PA 16802, USA
@article{CRPHYS_2015__16_10_1012_0,
     author = {Martin Bojowald},
     title = {(Loop) quantum gravity and the inflationary scenario},
     journal = {Comptes Rendus. Physique},
     pages = {1012--1017},
     publisher = {Elsevier},
     volume = {16},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crhy.2015.08.007},
     language = {en},
}
TY  - JOUR
AU  - Martin Bojowald
TI  - (Loop) quantum gravity and the inflationary scenario
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 1012
EP  - 1017
VL  - 16
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.08.007
LA  - en
ID  - CRPHYS_2015__16_10_1012_0
ER  - 
%0 Journal Article
%A Martin Bojowald
%T (Loop) quantum gravity and the inflationary scenario
%J Comptes Rendus. Physique
%D 2015
%P 1012-1017
%V 16
%N 10
%I Elsevier
%R 10.1016/j.crhy.2015.08.007
%G en
%F CRPHYS_2015__16_10_1012_0
Martin Bojowald. (Loop) quantum gravity and the inflationary scenario. Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 1012-1017. doi : 10.1016/j.crhy.2015.08.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.007/

[1] L.M. Krauss; F. Wilczek Using cosmology to establish the quantization of gravity, Phys. Rev. D, Volume 89 (2014) | arXiv

[2] G. Calcagni Observational effects from quantum cosmology, Ann. Phys., Volume 525, 2012, pp. 323-338 | arXiv

[3] A. Barrau; T. Cailleteau; J. Grain; J. Mielczarek Observational issues in loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014) | arXiv

[4] J.F. Donoghue General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D, Volume 50 (1994), pp. 3874-3888 | arXiv

[5] C.P. Burgess Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Relativ., Volume 7 (2004), p. 5 http://www.livingreviews.org/lrr-2004-5 | arXiv

[6] R. Arnowitt; S. Deser; C.W. Misner The Dynamics of General Relativity, Wiley, New York, 1962 (reprinted in [32])

[7] M. Bojowald Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity, Cambridge University Press, Cambridge, 2010

[8] S.A. Hojman; K. Kuchař; C. Teitelboim Geometrodynamics regained, Ann. Phys. (New York), Volume 96 (1976), pp. 88-135

[9] C. Blohmann; M.C. Barbosa Fernandes; A. Weinstein Groupoid symmetry and constraints in general relativity. 1: kinematics | arXiv

[10] M. Bojowald; S. Brahma Effective constraint algebras with structure functions | arXiv

[11] C. Rovelli; L. Smolin Loop space representation of quantum general relativity, Nucl. Phys. B, Volume 331 (1990), pp. 80-152

[12] A. Ashtekar; J. Lewandowski; D. Marolf; J. Mourão; T. Thiemann Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, J. Math. Phys., Volume 36 (1995) no. 11, pp. 6456-6493 | arXiv

[13] T. Thiemann Anomaly-free formulation of non-perturbative, four-dimensional lorentzian quantum gravity, Phys. Lett. B, Volume 380 (1996), pp. 257-264 | arXiv

[14] M. Bojowald; A. Skirzewski Effective equations of motion for quantum systems, Rev. Math. Phys., Volume 18 (2006), pp. 713-745 | arXiv

[15] M. Bojowald; B. Sandhöfer; A. Skirzewski; A. Tsobanjan Effective constraints for quantum systems, Rev. Math. Phys., Volume 21 (2009), pp. 111-154 | arXiv

[16] J.D. Reyes Spherically symmetric loop quantum gravity: connections to 2-dimensional models and applications to gravitational collapse, The Pennsylvania State University, 2009 (Ph.D. thesis)

[17] T. Cailleteau; L. Linsefors; A. Barrau Anomaly-free perturbations with inverse-volume and holonomy corrections in loop quantum cosmology, Class. Quantum Gravity, Volume 31 (2014), p. 125011 | arXiv

[18] M. Bojowald; G.M. Paily; J.D. Reyes Discreteness corrections and higher spatial derivatives in effective canonical quantum gravity, Phys. Rev. D, Volume 90 (2014) | arXiv

[19] A. Barrau; M. Bojowald; G. Calcagni; J. Grain; M. Kagan Anomaly-free cosmological perturbations in effective canonical quantum gravity | arXiv

[20] G. Date; G.M. Hossain Genericity of big bounce in isotropic loop quantum cosmology, Phys. Rev. Lett., Volume 94 (2005) | arXiv

[21] K. Vandersloot On the Hamiltonian constraint of loop quantum cosmology, Phys. Rev. D, Volume 71 (2005) | arXiv

[22] A. Ashtekar; T. Pawlowski; P. Singh Quantum nature of the Big Bang: improved dynamics, Phys. Rev. D, Volume 74 (2006) | arXiv

[23] M. Bojowald Large scale effective theory for cosmological bounces, Phys. Rev. D, Volume 75 (2007) | arXiv

[24] M. Bojowald Quantum cosmology: effective theory, Class. Quantum Gravity, Volume 29 (2012), p. 213001 | arXiv

[25] M. Bojowald; G.M. Paily Deformed general relativity and effective actions from loop quantum gravity, Phys. Rev. D, Volume 86 (2012) | arXiv

[26] M. Bojowald Back to the beginning of quantum spacetime, Phys. Today, Volume 66 (2013), p. 35

[27] J. Mielczarek Signature change in loop quantum cosmology | arXiv

[28] F.G. Tricomi Repertorium der Theorie der Differentialgleichungen, Springer Verlag, 1968

[29] I. Agulló; A. Ashtekar; W. Nelson A quantum gravity extension of the inflationary scenario, Phys. Rev. Lett., Volume 109 (2012) | arXiv

[30] M. Bojowald; G. Calcagni; S. Tsujikawa Observational constraints on loop quantum cosmology, Phys. Rev. Lett., Volume 107 (2011) | arXiv

[31] J. Mielczarek Inflationary power spectra with quantum holonomy corrections | arXiv

[32] R. Arnowitt; S. Deser; C.W. Misner The dynamics of general relativity, Gen. Relativ. Gravit., Volume 40 (2008), pp. 1997-2027

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Testing loop quantum cosmology

Edward Wilson-Ewing

C. R. Phys (2017)


Testing different approaches to quantum gravity with cosmology: An overview

Aurélien Barrau

C. R. Phys (2017)


The universe as a quantum gravity condensate

Daniele Oriti

C. R. Phys (2017)