Comptes Rendus
Escher in the Sky
[Escher dans le ciel]
Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 914-927.

Après une brève revue de l'histoire de la théorie de l'inflation, cet article introduit une classe de modèles inflationaires récemment découverte : les << attracteurs de type α >>. Ces modèles offrent un très bon accord avec les données observationnelles. Leur prédiction sur l'indice spectral et le rapport tenseur–scalaire, ns12/N et r12α/N2, est très robuste vis-à-vis d'une modification du potentiel de l'inflaton. Une interprétation surprenante de ces attracteurs α repose sur la géométrie des espaces de modules avec bord : celle d'un disque hyperbolique de Poincaré de rayon 3α, merveilleusement représenté par le dessin Circle Limit IV d'Escher. Dans ces modèles, l'amplitude des ondes gravitationnelles est proportionnelle au carré du rayon du disque de Poincaré.

We give a brief review of the history of inflationary theory and then concentrate on the recently discovered set of inflationary models called cosmological α-attractors. These models provide an excellent fit to the latest observational data. Their predictions ns12/N and r12α/N2 are very robust with respect to the modifications of the inflaton potential. An intriguing interpretation of α-attractors is based on a geometric moduli space with a boundary: a Poincaré disk model of a hyperbolic geometry with the radius 3α, beautifully represented by the Escher's picture Circle Limit IV. In such models, the amplitude of the gravitational waves is proportional to the square of the radius of the Poincaré disk.

Publié le :
DOI : 10.1016/j.crhy.2015.07.004
Keywords: Inflation, Supergravity, Geometry
Mot clés : Inflation, Supergravité, Géométrie
Renata Kallosh 1 ; Andrei Linde 1

1 Department of Physics and SITP, Stanford University, Stanford, CA 94305, USA
@article{CRPHYS_2015__16_10_914_0,
     author = {Renata Kallosh and Andrei Linde},
     title = {Escher in the {Sky}},
     journal = {Comptes Rendus. Physique},
     pages = {914--927},
     publisher = {Elsevier},
     volume = {16},
     number = {10},
     year = {2015},
     doi = {10.1016/j.crhy.2015.07.004},
     language = {en},
}
TY  - JOUR
AU  - Renata Kallosh
AU  - Andrei Linde
TI  - Escher in the Sky
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 914
EP  - 927
VL  - 16
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.07.004
LA  - en
ID  - CRPHYS_2015__16_10_914_0
ER  - 
%0 Journal Article
%A Renata Kallosh
%A Andrei Linde
%T Escher in the Sky
%J Comptes Rendus. Physique
%D 2015
%P 914-927
%V 16
%N 10
%I Elsevier
%R 10.1016/j.crhy.2015.07.004
%G en
%F CRPHYS_2015__16_10_914_0
Renata Kallosh; Andrei Linde. Escher in the Sky. Comptes Rendus. Physique, Volume 16 (2015) no. 10, pp. 914-927. doi : 10.1016/j.crhy.2015.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.004/

[1] P.A.R. Ade; et al.; BICEP2 and Planck Collaborations A joint analysis of BICEP2/Keck array and Planck data | arXiv

[2] Planck Collaboration; P.A.R. Ade; et al.; P.A.R. Ade; et al.; Planck Collaboration Planck 2015, XX: constraints on inflation | arXiv

[3] A.D. Linde Chaotic inflation, Phys. Lett. B, Volume 129 (1983), p. 177

[4] A.D. Linde (Contemp. Concepts Phys.), Volume vol. 5, Harwood, Chur, Switzerland (1990), p. 1 | arXiv

[5] A.A. Starobinsky A new type of isotropic cosmological models without singularity, Phys. Lett. B, Volume 91 (1980), p. 99

[6] V.F. Mukhanov; G.V. Chibisov Quantum fluctuation and nonsingular universe, JETP Lett., Volume 33 (1981), p. 532 (in Russian) [Pis'ma Zh. Eksp. Teor. Fiz. 33, 549 (1981)]

[7] A.H. Guth The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, Volume 23 (1981), p. 347

[8] A.D. Linde A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, Volume 108 (1982), p. 389

[9] A. Albrecht; P.J. Steinhardt Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., Volume 48 (1982), p. 1220

[10] A.A. Starobinsky; S.W. Hawking; A.H. Guth; S.Y. Pi; J.M. Bardeen; P.J. Steinhardt; M.S. Turner; V.F. Mukhanov Gravitational instability of the universe filled with a scalar field, JETP Lett., Volume 117 (1982), p. 175 [Pis'ma Zh. Eksp. Teor. Fiz. 41, 402 (1985)]

[11] S.W. Hawking A Brief History of Time, Bantam Books, NY, 1988

[12] A.D. Linde; A.D. Linde Primordial inflation without primordial monopoles, Phys. Lett. B, Volume 37 (1983), p. 606 (in Russian) [JETP Lett. 37 (1983) 724]

[13] L. Boubekeur; D.H. Lyth Hilltop inflation, J. Cosmol. Astropart. Phys., Volume 0507 (2005) | arXiv

[14] A.S. Goncharov; A.D. Linde; A.B. Goncharov; A.D. Linde Chaotic inflation in supergravity, Phys. Lett. B, Volume 59 (1984), p. 930 [Zh. Eksp. Teor. Fiz. 86, 1594 (1984)]

[15] A.A. Starobinsky The perturbation spectrum evolving from a nonsingular initially De-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett., Volume 9 (1983), p. 302

[16] L.A. Kofman; A.D. Linde; A.A. Starobinsky Inflationary universe generated by the combined action of a scalar field and gravitational vacuum polarization, Phys. Lett. B, Volume 157 (1985), p. 361

[17] B. Whitt Fourth order gravity as general relativity plus matter, Phys. Lett. B, Volume 145 (1984), p. 176

[18] K. Freese; J.A. Frieman; A.V. Olinto Natural inflation with pseudo-Nambu–Goldstone bosons, Phys. Rev. Lett., Volume 65 (1990), p. 3233

[19] A.D. Linde; A.D. Linde Hybrid inflation, Phys. Rev. D, Volume 259 (1991), p. 38 | arXiv

[20] B.S. DeWitt Quantum theory of gravity, 1: the canonical theory, Phys. Rev., Volume 160 (1967), p. 1113

[21] A. Vilenkin Creation of universes from nothing, Phys. Lett. B, Volume 117 (1982), p. 25

[22] A.D. Linde The inflationary universe, Rep. Prog. Phys., Volume 47 (1984), p. 925

[23] Y.B. Zeldovich; A.A. Starobinsky Quantum creation of a universe in a nontrivial topology, Sov. Astron. Lett., Volume 10 (1984), p. 135

[24] A. Vilenkin Quantum creation of universes, Phys. Rev. D, Volume 30 (1984), p. 509

[25] A.D. Linde Creation of a compact topologically nontrivial inflationary universe, J. Cosmol. Astropart. Phys., Volume 0410 (2004) | arXiv

[26] A. Vilenkin The birth of inflationary universes, Phys. Rev. D, Volume 27 (1983), p. 2848

[27] A.D. Linde Eternally existing self-reproducing chaotic inflationary universe, Phys. Lett. B, Volume 175 (1986), p. 395

[28] A.D. Linde Eternal chaotic inflation, Mod. Phys. Lett. A, Volume 1 (1986), p. 81

[29] A.D. Linde; D.A. Linde; A. Mezhlumian From the Big Bang theory to the theory of a stationary universe, Phys. Rev. D, Volume 49 (1994), p. 1783 | arXiv

[30] R. Bousso; J. Polchinski Quantization of four form fluxes and dynamical neutralization of the cosmological constant, J. High Energy Phys., Volume 0006 (2000) | arXiv

[31] S. Kachru; R. Kallosh; A.D. Linde; S.P. Trivedi De Sitter vacua in string theory, Phys. Rev. D, Volume 68 (2003) | arXiv

[32] M.R. Douglas The statistics of string/M theory vacua, J. High Energy Phys., Volume 0305 (2003) | arXiv

[33] L. Susskind The Anthropic landscape of string theory (Bernard Carr, ed.), Universe or Multiverse?, 2007, pp. 247-266 | arXiv

[34] R. Kallosh; A. Linde; R. Kallosh; A. Linde Multi-field conformal cosmological attractors, J. Cosmol. Astropart. Phys., Volume 1307 (2013) | arXiv

[35] S. Ferrara; R. Kallosh; A. Linde; M. Porrati; S. Ferrara; P. Fré; A.S. Sorin; S. Ferrara; P. Fré; A.S. Sorin On the gauged Kahler isometry in minimal supergravity models of inflation, Fortschr. Phys., Volume 88 (2013) no. 8, p. 277 | arXiv

[36] R. Kallosh; A. Linde; D. Roest; R. Kallosh; A. Linde; D. Roest Large field inflation and double α-attractors, J. High Energy Phys., Volume 1311 (2013) | arXiv

[37] S. Cecotti; R. Kallosh Cosmological attractor models and higher curvature supergravity, J. High Energy Phys., Volume 1405 (2014) | arXiv

[38] M. Galante; R. Kallosh; A. Linde; D. Roest The unity of cosmological attractors, Phys. Rev. Lett., Volume 114 (2015) no. 14 | arXiv

[39] A. Linde Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?, J. Cosmol. Astropart. Phys., Volume 1502 (2015) no. 02 | arXiv

[40] R. Kallosh; A. Linde Planck, LHC, and α-attractors | arXiv

[41] D.S. Salopek; J.R. Bond; J.M. Bardeen; F.L. Bezrukov; M. Shaposhnikov The standard model Higgs boson as the inflaton, Phys. Lett. B, Volume 40 (1989), p. 1753 | arXiv

[42] S. Helgason; R. Narayanan; C.A. Tracy Holonomic quantum field theory of bosons in the Poincare disk and the zero curvature limit, Nucl. Phys. B, Volume 340 (1984), p. 568

[43] E. Silverstein; E. Silverstein; A. Westphal Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D, Volume 77 (2008) | arXiv

[44] L. Susskind The Cosmic Landscape: String Theory and the Illusion of Intelligent Design, Little, Brown and Company, 2005

[45] J.J. Carrasco, R. Kallosh, A. Linde, in preparation.

[46] E. Cremmer; J. Scherk; S. Ferrara SU(4) invariant supergravity theory, Phys. Lett. B, Volume 74 (1978), p. 61

[47] E. Bergshoeff; M. de Roo; B. de Wit; M. de Roo Matter coupling in N=4 supergravity, Nucl. Phys. B, Volume 182 (1981), p. 173

[48] S. Ferrara; R. Kallosh; A. Van Proeyen Conjecture on hidden superconformal symmetry of N=4 supergravity, Phys. Rev. D, Volume 87 (2013) no. 2 | arXiv

[49] E. Cremmer; B. Julia; B. de Wit; H. Nicolai N=8 supergravity, Nucl. Phys. B, Volume 159 (1979), p. 141

[50] M. Abreu; M. Abreu; S. Donaldson; S. Donaldson Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal., Volume 9 (1998) no. 6, pp. 641-651

[51] D. Roest; M. Scalisi Cosmological attractors from α-scale supergravity | arXiv

[52] A. Linde Single-field α-attractors | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Isotropization of the universe during inflation

Thiago Pereira; Cyril Pitrou

C. R. Phys (2015)


Inflation in string theory confronts data

Eva Silverstein

C. R. Phys (2015)


Inflation in the standard cosmological model

Jean-Philippe Uzan

C. R. Phys (2015)