Comptes Rendus
Advances in ex-situ Nuclear Magnetic Resonance
[Résonance Magnétique Nucléaire ex-situ]
Comptes Rendus. Physique, Volume 5 (2004) no. 3, pp. 337-347.

. La Résonance Magnétique Nucléaire a révolutionné la science moderne par sa précision, par sa sélectivité et par son caractère non invasif. L'Imagerie par Résonance Magnétique et la Spectroscopie ont permis en effet l'obtention d'un grand nombre d'information pour des domaines aussi variés que les biomolécules, les matériaux, les organismes vivants ou les particules nanométriques. Une limitation majeure existe pourtant : toutes ces études ont lieu au laboratoire, car elles requièrent des aimants supraconducteurs très intenses et extrèmement homogènes. De plus, la taille maximale de l'object ou du sujet à étudier est limitée par les dimensions de l'aimant qui le contiendra. Les efforts pour contourner ces limitations ont conduit aux développements de systèmes de Résonance Magnétique portables. Leur utilisation est restée cependant principalement qualitative car l'information spectroscopique ne pouvait pas être obtenue. Nous avons introduit récemment une approche qui permet d'accéder à cette information spectrale même en présence de champ magnétique inhomogène. Elle est basée sur la corrélation entre le champ de radiofréquence effectif et le champs magnétique statique. Nous rapportons ici plusieurs implémentations pratiques de cette approche en discutant leurs perspectives en termes d'applicabilité et d'efficacité pour la RMN ex-situ.

Nuclear Magnetic Resonance has revolutionized modern science by its precision, selectivity and non-envasiveness. From complicated biomolecules to materials, from living organisms to nanometric particles, Magnetic Resonance Imaging and Spectroscopy have provided a wealth of invaluable information. Those studies take place in the laboratory, since they require strong and extremely homogeneous superconducting magnets and this represents a major limitation for the technique. Furthermore, the size of the object or subject to study is limited since it has to fit inside the bore of the magnet. Efforts to alleviate those problems lead to the recent development of portable magnetic resonance systems. Their use remained, however, mainly qualitative, since spectroscopic information could not be recovered. We have introduced recently an approach to regain this lost spectral information even in the presence of inhomogeneous magnetic fields. Our approach is based on the matching between the effect of the radio-frequency field and the effect of the static magnetic field. Several practical implementations will be reviewed and put in perspective for their applicability and efficiency in ex-situ NMR.

Publié le :
DOI : 10.1016/j.crhy.2004.03.016
Keywords: Ex-situ NMR, Inhomogeneous fields, Z-rotations, Correlated fields, Adiabatic pulses, Composite pulses, NMR sensors, Open magnets, One-sided NMR systems
Mot clés : RMN ex-situ, Champs inhomogènes, Rotations Z, Champs corrélés, Impulsions adiabatiques, Impulsions composites, Détecteurs de RMN, Aimants ouverts, Système RMN à un coté
Dimitris Sakellariou 1, 2 ; Carlos A. Meriles 1 ; Alexander Pines 1

1 Department of Chemistry, UC Berkeley, Berkeley, CA 94720, USA
2 DSM/DRECAM/Service de chimie moléculaire, CEA/Saclay, 91191 Gif sur Yvette, France
@article{CRPHYS_2004__5_3_337_0,
     author = {Dimitris Sakellariou and Carlos A. Meriles and Alexander Pines},
     title = {Advances in ex-situ {Nuclear} {Magnetic} {Resonance}},
     journal = {Comptes Rendus. Physique},
     pages = {337--347},
     publisher = {Elsevier},
     volume = {5},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crhy.2004.03.016},
     language = {en},
}
TY  - JOUR
AU  - Dimitris Sakellariou
AU  - Carlos A. Meriles
AU  - Alexander Pines
TI  - Advances in ex-situ Nuclear Magnetic Resonance
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 337
EP  - 347
VL  - 5
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.03.016
LA  - en
ID  - CRPHYS_2004__5_3_337_0
ER  - 
%0 Journal Article
%A Dimitris Sakellariou
%A Carlos A. Meriles
%A Alexander Pines
%T Advances in ex-situ Nuclear Magnetic Resonance
%J Comptes Rendus. Physique
%D 2004
%P 337-347
%V 5
%N 3
%I Elsevier
%R 10.1016/j.crhy.2004.03.016
%G en
%F CRPHYS_2004__5_3_337_0
Dimitris Sakellariou; Carlos A. Meriles; Alexander Pines. Advances in ex-situ Nuclear Magnetic Resonance. Comptes Rendus. Physique, Volume 5 (2004) no. 3, pp. 337-347. doi : 10.1016/j.crhy.2004.03.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.03.016/

[1] R.R. Ernst; G. Bodenhausen; A. Wokaun Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1989

[2] M.H. Levitt The Encyclopedia of NMR, Wiley, London, 1997

[3] P.T. Callaghan Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, Oxford, England, 1994

[4] C.A. Meriles; D. Sakellariou; H. Heise; A.J. Moulé; A. Pines Approach to high-resolution ex situ NMR spectroscopy, Science, Volume 293 (2001), pp. 82-85

[5] D.P. Weitekamp; J.R. Garbow; J.B. Murdoch; A. Pines High-resolution NMR spectra in inhomogeneous magnetic fields: application of total spin coherence transfer echoes, J. Am. Chem. Soc., Volume 103 (1981), pp. 3578-3579

[6] J.J. Balbach; M.S. Conradi; D.P. Cistola; C. Tang; J.R. Garbow; W.C. Hutton High-resolution NMR in inhomogeneous fields, Chem. Phys. Lett., Volume 277 (1997), pp. 367-374

[7] Y.Y. Lin; S. Ahn; N. Murali; W. Brey; C.R. Bowers; W.S. Warren High-resolution, >1 GHz NMR in unstable magnetic fields, Phys. Rev. Lett., Volume 85 (2000), pp. 3732-3735

[8] M. Munowitz; A. Pines Multiple-quantum nuclear magnetic resonance spectroscopy, Science, Volume 233 (1986), pp. 525-531

[9] P.H. Bolton; G. Bodenhausen Resolution enhancement in heteronuclear two-dimensional spectroscopy by realignment of coherence transfer echoes, J. Magn. Reson., Volume 46 (1982), pp. 306-318

[10] M. Gochin; D.P. Weitekamp; A. Pines A SHARP method for high-resolution NMR of heteronuclear spin systems in inhomogeneous fields, J. Magn. Reson., Volume 63 (1985), pp. 431-437

[11] D. Sakellariou; S.P. Brown; A. Lesage; S. Hediger; M. Bardet; A. Meriles; A. Pines; L. Emsley High-resolution NMR spectra of disordered solids, J. Am. Chem. Soc., Volume 125 (2003), pp. 4376-4380

[12] S. Vathyam; S. Lee; W.S. Warren Homogeneous NMR spectra in inhomogeneous fields, Science, Volume 272 (1996), pp. 92-96

[13] R. Kimmich; I. Ardelean; Y.-Y. Lin; W.S. Warren Multiple spin echo generation by gradients of the radio frequency amplitude: two-dimensional nutation spectroscopy and multiple rotary echoes, J. Chem. Phys., Volume 111 (1999), pp. 6501-6509

[14] S. Garrett-Roe; W.S. Warren Numerical studies of intermolecular multiple quantum coherences: high-resolution NMR in inhomoeneous fields and contrast enhancement in MRI, J. Magn. Reson., Volume 146 (2000), pp. 1-13

[15] W. Richter; W.S. Warren Intermolecular multiple quantum coherences in liquids, Concepts in Magnetic Resonance, Volume 12 (2000), pp. 396-409

[16] W.S. Warren; W. Richter; A.H. Andreotti; B.T. Farmer Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR, Science, Volume 262 (1993), pp. 2005-2009

[17] S. Lee; W. Richter; S. Vathyam; W.S. Warren Quantum treatment of the effects of dipole–dipole interactions in liquid nuclear magnetic resonance, J. Chem. Phys., Volume 105 (1996), pp. 874-900

[18] L.J. Burnett; J.A. Jackson; J.F. Harmon Remote (inside-out) NMR II. Sensitivity of detection for external samples, J. Magn. Reson., Volume 41 (1980), pp. 406-410

[19] J.A. Jackson; L.J. Burnett; J.F. Harmon Remote (inside-out) NMR III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field, J. Magn. Reson., Volume 41 (1980), pp. 411-421

[20] R.L. Kleinberg; A. Sezginer; D.D. Griffin; M. Fukuhara Novel NMR apparatus for investigating an external sample, J. Magn. Reson., Volume 97 (1992), pp. 466-485

[21] G. Eidmann; R. Savelsberg; P. Blümler; Blümich The NMR MOUSE, a mobile universal surface explorer, J. Magn. Reson. A, Volume 122 (1996), pp. 104-109

[22] B. Blümich; P. Blümler; G. Eidmann; R. Haken; U. Schmitz; K. Saito; G. Zimmer The NMR-MOUSE: construction, excitation and applications, Magn. Reson. Imaging, Volume 16 (1998), pp. 479-484

[23] F. Bãlibanu; K. Hailu; D.E. Demco; B. Blümich Nuclear magnetic resonance in inhomogeneous magnetic fields, J. Magn. Reson., Volume 145 (2000), pp. 246-258

[24] E.L. Hahn Spin echoes, Phys. Rev., Volume 80 (1950), pp. 580-594

[25] H.Y. Carr; E.M. Purcell Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev., Volume 94 (1954), pp. 630-638

[26] A. Guthausen; G. Zimmer; P. Blümler; B. Blümich Analysis of polymer materials by surface NMR via the MOUSE, J. Magn. Reson., Volume 130 (1998), pp. 1-7

[27] G. Zimmer; A. Guthausen; B. Blümich Characterization of cross-link density in technical elastomers by the NMR-MOUSE, Solid State Nuclear Magn. Reson., Volume 12 (1998), pp. 183-190

[28] J. Prado; B. Blümich; U. Schmitz One-dimensional imaging with a palm-size probe, J. Magn. Reson., Volume 144 (2000), pp. 200-206

[29] R. Haken; B. Blümich Anisotropy in tendon investigated in vivo by a portable NMR scanner, the NMR-MOUSE, J. Magn. Reson., Volume 144 (2000), pp. 195-199

[30] H. Heise; D. Sakellariou; C.A. Meriles; A. Pines Two dimensional high-resolution NMR spectra in matched B0 and B1 field gradients, J. Magn. Reson., Volume 156 (2002), pp. 146-151

[31] S. Antonijevic; S. Wimperis High-resolution NMR spectroscopy in inhomogeneous B0 and B1 fields by two-dimensional correlation, Chem. Phys. Lett., Volume 381 (2003), pp. 634-641

[32] R. Freeman; T.A. Frenkiel; M.H. Levitt Composite z-pulses, J. Magn. Reson., Volume 44 (1981), p. 409

[33] A.L. Bloom Nuclear induction in inhomogeneous fields, Phys. Rev., Volume 98 (1955), pp. 1105-1111

[34] R. Kaiser The edge echo, J. Magn. Reson., Volume 43 (1981), pp. 103-109

[35] A. Jerschow Multiple echoes initiated by a single radio frequency pulse in NMR, Chem. Phys. Lett., Volume 296 (1998), pp. 466-470

[36] I. Ardelean; A. Scharfenecker; R. Kimmich Two-pulse nutation echoes generated by gradients of the radiofrequency amplitude and of the main magnetic field, J. Magn. Reson., Volume 144 (2000), pp. 45-52

[37] I. Ardelean; R. Kimmich; A. Klemm The nutation spin echo and its use for localized NMR, J. Magn. Reson., Volume 146 (2000), pp. 43-48

[38] D. Sakellariou; C.A. Meriles; A. Moulé; A. Pines Variable rotation composite pulses for high resolution nuclear magnetic resonance using inhomogeneous magnetic and radio-frequency fields, Chem. Phys. Lett., Volume 363 (2002), pp. 25-33

[39] M. Garwood; L. DelaBarre The return of the frequency sweep: designing adiabatic pulses for contemporary NMR, J. Magn. Reson., Volume 153 (2001), pp. 155-177

[40] A. Tannus; M. Garwood Adiabatic pulses, NMR in Biomedicine, Volume 10 (1997), pp. 423-434

[41] R.A. De Graaf; K. Nicolay Adiabatic rf pulses: applications to in vivo NMR, Concepts Magn. Reson., Volume 9 (1997), pp. 247-268

[42] C.A. Meriles; D. Sakellariou; A. Pines Broadband phase modulation by adiabatic pulses, J. Magn. Reson., Volume 164 (2003), pp. 177-181

[43] K.E. Cano; M.A. Smith; A.J. Shaka Adjustable, broadband, selective excitation with uniform phase, J. Magn. Reson., Volume 155 (2002), pp. 131-139

[44] V. Demas, D. Sakellariou, C. Meriles, S. Han, J. Reimer, A. Pines, 3D phase-encoded chemical shift MRI in the presence of inhomogeneous fields, J. Magn. Reson. (2004), submitted for publication

[45] D. Topgaard, A. Pines, Self-diffusion measurements with chemical shift resolution in steady magnetic field gradients, J. Magn. Reson. (2004), submitted for publication

[46] J. Baum; R. Tycko; A. Pines Broadband population inversion by phase modulated pulses, J. Chem. Phys., Volume 79 (1983), pp. 4643-4644

[47] J. Baum; R. Tycko; A. Pines Broadband and adiabatic inversion of a two-level system by phase modulated pulses, Phys. Rev. A, Volume 32 (1985), pp. 3435-3447

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Fast field-cycling magnetic resonance imaging

David J. Lurie; Silvio Aime; Simona Baroni; ...

C. R. Phys (2010)


Multi-dimensional inverse Laplace spectroscopy in the NMR of porous media

Petrik Galvosas; Paul T. Callaghan

C. R. Phys (2010)


SPROM – an efficient program for NMR/MRI simulations of inter- and intra-molecular multiple quantum coherences

Congbo Cai; Meijin Lin; Zhong Chen; ...

C. R. Phys (2008)