Article
Distinct HLA Associations with Rheumatoid Arthritis Subsets Defined by Serological Subphenotype

https://doi.org/10.1016/j.ajhg.2019.08.002Get rights and content
Under a Creative Commons license
open access

Rheumatoid arthritis (RA) is the most common immune-mediated arthritis. Anti-citrullinated peptide antibodies (ACPA) are highly specific to RA and assayed with the commercial CCP2 assay. Genetic drivers of RA within the MHC are different for CCP2-positive and -negative subsets of RA, particularly at HLA-DRB1. However, aspartic acid at amino acid position 9 in HLA-B (Bpos-9) increases risk to both RA subsets. Here we explore how individual serologies associated with RA drive associations within the MHC. To define MHC differences for specific ACPA serologies, we quantified a total of 19 separate ACPAs in RA-affected case subjects from four cohorts (n = 6,805). We found a cluster of tightly co-occurring antibodies (canonical serologies, containing CCP2), along with several independently expressed antibodies (non-canonical serologies). After imputing HLA variants into 6,805 case subjects and 13,467 control subjects, we tested associations between the HLA region and RA subgroups based on the presence of canonical and/or non-canonical serologies. We examined CCP2(+) and CCP2(−) RA-affected case subjects separately. In CCP2(−) RA, we observed that the association between CCP2(−) RA and Bpos-9 was derived from individuals who were positive for non-canonical serologies (omnibus_p = 9.2 × 10−17). Similarly, we observed in CCP2(+) RA that associations between subsets of CCP2(+) RA and Bpos-9 were negatively correlated with the number of positive canonical serologies (p = 0.0096). These findings suggest unique genetic characteristics underlying fine-specific ACPAs, suggesting that RA may be further subdivided beyond simply seropositive and seronegative.

Keywords

rheumatoid arthritis
MHC
major histocompatability complex
genetics
HLA
citrullinated peptides

Cited by (0)

17

These authors contributed equally to this work