Review
Thermoreactive water-soluble polymers, nonionic surfactants, and hydrogels as reagents in biotechnology

https://doi.org/10.1016/0141-0229(93)90122-IGet rights and content

Abstract

Thermoprecipitating polymers such as poly (N-isopropylacrylamide), poly(N-vinyl caprolactam), and some ethylene oxide-containing surfactants appear to be suitable for developing new separation systems to complement traditional precipitation, chromatography, and extraction of biological molecules. The nature of thermally induced phase separation of polymers and nonionic surfactants is discussed and examples are given. Covalent coupling of an enzyme to a thermoprecipitable polymer results in a biocatalyst which combines the qualities of soluble and immobilized enzymes. Biocatalysts of this type can be separated from reaction media by precipitation after temperature increase. The use of thermopreciptating polymer-protein conjugates in immunoassays overcomes one of the shortcomings of traditional methods with solid sorbent-linked antigen or antibody-diffusional limitations. Thermore-active hydrogels produced by crosslinking of thermoprecipitating polymers can be successfully used for concentrating macromolecules or microbe-rich slurries. Alternate volume changes of hydrogels on heating and cooling produce a “hydraulic pump” which can enhance the productivity of an immobilized biocatalyst. Hydrogels could be used to control reaction of diffusion rates by a thermal feedback mechanism.

References (106)

  • Y. Taniguchi et al.

    J. Colloid Interf. Sci.

    (1974)
  • R.A. Horne et al.

    J. Colloid Interf. Sci.

    (1971)
  • F. Macritchie

    J. Colloid Polym. Sci.

    (1973)
  • Yu.E. Kirsh

    Progr. Polym. Sci.

    (1985)
  • W.M. Maclay

    J. Colloid Sci.

    (1956)
  • L. Sepulveda et al.

    J. Colloid. Interf. Sci.

    (1968)
  • K. Shinoda

    J. Colloid. Interf. Sci.

    (1970)
  • H. Schott et al.

    J. Pharm. Sci.

    (1976)
  • J. Goldfarb et al.

    J. Colloid Interf. Sci.

    (1969)
  • H. Arai

    J. Colloid Interf. Sci.

    (1967)
  • C. Bordier

    J. Biol. Chem.

    (1981)
  • S.O. Pember et al.

    J. Biol. Chem.

    (1984)
  • K.J. Clemetson et al.

    Biochim. Biophys. Acta

    (1984)
  • P. Newman et al.

    Thromb. Res.

    (1982)
  • G. Alcaraz et al.

    J. Biol. Chem.

    (1984)
  • M. Pecs et al.

    J. Biotechnol.

    (1991)
  • K. Martinek et al.

    Biochim. Biophys. Acta

    (1977)
  • R.F. Freitas et al.

    Chem. Eng. Sci.

    (1987)
  • A.S. Hoffman

    J. Controlled Release

    (1987)
  • L. Dong et al.

    J. Controlled Release

    (1991)
  • B.G. Kabra et al.

    Polymer

    (1992)
  • I. Prigogine et al.
  • L.D. Taylor et al.

    J. Polym. Sci.

    (1975)
  • Y. Okahata et al.

    Macromolecules

    (1986)
  • S. Fujishige et al.

    J. Phys. Chem.

    (1989)
  • M. Heskins et al.

    J. Macromol. Sci. Chem.

    (1968)
  • J.P. Priest et al.
  • S. Ito et al.

    Chemical Abstracts

    (1987)
  • S. Ito et al.

    Chemical Abstracts

    (1987)
  • S. Ito et al.

    Chemical Abstracts

    (1987)
  • S. Ito et al.

    Chemical Abstracts

    (1987)
  • S. Ito et al.

    Chemical Abstracts

    (1986)
  • S. Ito et al.

    Chemical Abstracts

    (1990)
  • S. Ito et al.

    Chemical Abstracts

    (1990)
  • S. Ito et al.

    Chemical Abstracts

    (1990)
  • S. Ito et al.

    Chemical Abstracts

    (1990)
  • S. Ito et al.

    Chemical Abstracts

    (1990)
  • S. Ito et al.

    Chemical Abstracts

    (1990)
  • S. Ito

    Chemical Abstracts

    (1989)
  • S. Ito

    Chemical Abstracts

    (1989)
  • S. Saito

    J. Polym. Sci. A-1

    (1969)
  • S. Ito et al.

    CA

    (1985)
  • I. Nwankwo et al.

    J. Polym. Sci., Part B: Polymer Physics

    (1988)
  • S.F. Sherstyuk et al.

    Biotekhnologia (Russian)

    (1987)
  • Yu.E. Kirsh et al.

    Eur. Polym. J.

    (1979)
  • I.M. Klotz

    Fed. Proc.

    (1965)
  • H.G. Schild et al.

    J. Phys. Chem.

    (1990)
  • E. Florin et al.

    J. Chem. Soc., Faraday Trans. I

    (1984)
  • G. Karlsröm et al.

    J. Phys. Chem.

    (1990)
  • A. Ciferri et al.

    J. Phys. Chem.

    (1966)
  • Cited by (181)

    • Supercritical drying of thermoresponsive gels based on N-isopropylacrylamide

      2020, Journal of the Taiwan Institute of Chemical Engineers
      Citation Excerpt :

      For an aqueous colloidal solution of polymers above their UCST or below their LCST the polymer and the solvent are enthalpically driven to preferentially associate with themselves, thus solvation fails and the polymer collapses. The underlying process of contraction of the polymer as the solvation decreases by heating has been reported for many polymers [7], and among them, N-isopropyl acrylamide (NIPAM) polymers and copolymers [8] are probably the most investigated ones because they have a LCST close to body temperature and almost independent of molecular weight and concentration, and they also show adequate biocompatibility [9]. The crosslinking degree and bonding density between the polymeric chains have great influence on the final properties of the gels.

    • Stimuli-sensitive drug delivery systems

      2020, Nanoengineered Biomaterials for Advanced Drug Delivery
    • Thermo-responsive polymers: Structure and design of smart materials

      2015, Switchable and Responsive Surfaces and Materials for Biomedical Applications
    View all citing articles on Scopus
    View full text