Skip to main content
Log in

Melanin granule model for laser-induced thermal damage in the retina

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

An analytical model for thermal damage of retinal tissue due to absorption of laser energy by finite-sized melanin granules is developed. Since melanin is the primary absorber of visible and near-IR light in the skin and in the retina, bulk heating of tissue can be determined by superposition of individual melanin granule effects. Granules are modeled as absorbing spheres surrounded by an infinite medium of water. Analytical solutions to the heat equation result in computations that are quick and accurate. Moreover, the model does not rely on symmetric beam profiles, and so arbitrary images can be studied. The important contribution of this model is to provide a more accurate biological description of submillisecond pulse exposures than previous retinal models, while achieving agreement for longer pulses. This model can also be naturally extended into the sub-microsecond domain by including vaporization as a damage mechanism. It therefore represents the beginning of a model which can be applied across the entire pulse duration domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, R. G. 1979. Retinal thermal injury. Non-ionizing Radiation—Proceedings of an ACGIH Topical Symposium, pp. 161–168.

  • Bargeron, C. B., O. J. Deters, R. A. Farrell and R. C. McCally. 1989. Epithelial damage in rabbit corneas exposed to CO2 laser radiation.Health Phys. 56, 85–95.

    Google Scholar 

  • Birngruber, R. 1980. Thermal modeling in biological tissues. InLasers in Biology and Medicine, F. Hillenkamp, R. Patresi and C. A. Sacchi (Eds.).NATO Advanced Study Institute, Series A—Life Sciences, Vol. 34, pp. 77–97. New York: Plenum Press.

    Google Scholar 

  • Birngruber, R. 1994. Private communication.

  • Birngruber, R., V.-P. Gabel and F. Hillenkamp. 1983. Experimental studies of laser thermal retinal injury.Health Phys. 44, 519–531.

    Google Scholar 

  • Birngruber, R., F. Hillenkamp and V.-P. Gabel 1985. Theoretical investigations of laser thermal retinal injury.Health Phys. 48, 781–796.

    Google Scholar 

  • Boettner, E. A. 1967. Spectral transmission of the eye. Final report on contract AF 41(609)-2966 for USAF School of Aerospace Medicine.

  • Boettner, E. A. and J. R. Wolter. 1962. Transmission of the ocular media. U.S. Air Force Technical Documentary Report MRL-TDR-62-34.

  • Bruckner, A. P. and J. Taboada. 1982. Retinal tissue damage by 6-psec 530-nm laser light pulses.J. Appl. Opt. 21, 365–367.

    Article  Google Scholar 

  • Cain, C. P., C. A. Toth, C. D. DiCarlo, C. D. Stein, G. D. Noojin, D. J. Stolarski and W. P. Roach. 1995. Visible retinal lesions from ultrashort laser pulses in the primate eye.Invest. Ophthalmol. Vis. Sci. 36, 879–888.

    Google Scholar 

  • Carslaw, H. S. and J. C. Jaeger. 1947.Conduction of Heat in Solids. Oxford, UK: Clarendon Press.

    MATH  Google Scholar 

  • Clarke, A. M., W. J. Geeraets and W. T. Ham, Jr. 1969. An equilibrium thermal model for retinal injury from optical sources.J. Appl. Opt. 8, 1051–1054.

    Google Scholar 

  • Cleary, S. F. and P. E. Hamrick. 1969. Laser-induced acoustic transients in the mammalian eye.J. Acoust. Soc. Am. 46, 1037–1044.

    Article  Google Scholar 

  • Geeraets, W. J. and R. E. Berry. 1968. Ocular spectral characteristics as related to hazards from lasers and other light sources.Am. J. Ophthalmol. 66, 15–20.

    Google Scholar 

  • Gerstman, B. S., C. R. Thompson, S. L. Jacques and M. E. Rogers. 1994. Laser-induced bubble formation in the retina.Lasers in Surgery and Medicine 18, 10–21.

    Article  Google Scholar 

  • Gibbons, W. D. and R. G. Allen. 1977. Retinal damage from long-term exposures to laser radiation.Invest. Ophthalmol. Vis. Sci. 16, 521–529.

    Google Scholar 

  • Goldenberg, H. 1951. A problem in radial heat flow.British J. Appl. Phys. 2 233.

    Article  Google Scholar 

  • Goldenberg, H. and C. J. Tranter. 1952. Heat flow in an infinite medium heated by a sphere.British J. Appl. Phys. 3, 296.

    Article  Google Scholar 

  • Gubisch, R. W. 1967. Optical performance of the human eye.J. Opt. Soc. Am. 57, 407–415.

    Google Scholar 

  • Hansen, W. P. and S. Fine. 1968. Melanin granule models for pulsed laser induced retinal injury.J. Appl. Opt. 7, 155–159.

    Google Scholar 

  • Hayes, J. R. and M. L. Wolbarsht. 1968. Thermal model for retinal damage induced by pulsed lasers.Aerospace Med. 39, 474.

    Google Scholar 

  • Hayes, J. R. and M. L. Wolbarsht. 1971. Models in pathology—Mechanisms of action of laser energy with biological tissues. InLaser Applications in Medicine and Biology, M. L. Wolbarsht (Ed.), pp. 255–274. New York: Plenum Press.

    Google Scholar 

  • Henriques, F. C. 1947. Studies of thermal injury.Arch. Path. 43, 489–502.

    Google Scholar 

  • Jacques, S. L. and D. J. McAuliffe. 1991. The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed-laser irradiation.Photochem. Photobiol. 53, 769–775.

    Google Scholar 

  • Jacques, S. L., A. A. Oraevsky, C. R. Thompson and B. S. Gerstman. 1994. A working theory and experiments on photoacoustic disruption of melanosomes to explain the threshold for minimum visible retinal lesions for sub-ns laser pulses. Laser-Tissue Interaction V.Proc. SPIE 2134A, 54–65.

    Google Scholar 

  • Maher, E. F. 1976. Transmission and absorption coefficients for ocular media of the rhesus monkey. Final report SAM-TR-78-32 for USAF School of Aerospace Medicine.

  • Marshall, J. 1970. Thermal and mechanical mechanisms in laser damage to the retina.Invest. Ophthalmol. 9, 97–115.

    Google Scholar 

  • McKenzie, A. L. 1990. Physics of thermal processes in laser-tissue interaction.Phys. Med. Biol. 35, 1175–1209.

    Article  Google Scholar 

  • Powell, J. A., J. V. Moloney and A. C. Newell. 1993. Beam collapse as explanation for anomalous ocular damage.J. Opt. Soc. Am. 10, 1230.

    Article  Google Scholar 

  • Rockwell, B. A., W. P. Roach and M. E. Rogers. 1994. Determination of self-focusing effects for light propagating in the eye. Laser-Tissue Interaction V.Proc. SPIE 2134A, 2–9.

    Google Scholar 

  • Roider, J., F. Hillenkamp, T. Flotte and R. Birngruber. 1993. Microphotocoagulation: selective effects of repetitive short laser pulses.Proc. Natl. Acad. Sci. USA 90, 8643–8647.

    Article  Google Scholar 

  • Scott, J. A. 1988. A finite element model of heat transport in the human eye.Phys. Med. Biol. 3, 227–241.

    Article  Google Scholar 

  • Shakib, M. and K. M. Zinn. 1973. Fine structure and function of ocular tissues. The choroid, Bruch's membrane, and the retinal pigment epithelium.Int. Ophthalmol. Clin. 13, 189–204.

    Google Scholar 

  • Sliney, D. H. 1994. Private communication.

  • Sliney, D. H. and S. L. Trokel. 1993.Medical Lasers and Their Safe Use. New York: Springer-Verlag.

    Google Scholar 

  • Sliney, D. H. and M. Wolbarsht. 1980.Safety with Lasers and Other Optical Sources. New York: Plenum Press.

    Google Scholar 

  • Takata, A. N.et al. 1974. Thermal model of laser induced eye damage. Final Technical Report J-TR-74-6324, Illinois Institute of Technology Research Institute.

  • Thompson, C. R. 1994. Melanin granule model for heating of tissue by laser. Laser-Tissue Interaction V.Proc. SPIE 2134A, 66–77.

    Google Scholar 

  • Vassiliadis, A. 1971. Ocular damage from laser radiation. InLaser Applications in Medicine and Biology 1, M. L. Wolbarsht (Ed.), p. 142. New York: Plenum Press.

    Google Scholar 

  • Vogel, A. and R. Birngruber. 1992.Lasers Light Ophthalmol. 5, 9.

    Google Scholar 

  • Vos, J. J. 1984. Disability glare—A state of the art report.CIE J. 2, 39.

    Google Scholar 

  • Wang, L. and S. L. Jacques. 1992. Monte Carlo modeling of light transport in multi-layered tissue in standard C. Department of the Navy, N00015-91-J-1354. Supported by the Medical Free Electron Laser Program.

  • Welch, A. J. 1984. The thermal response of laser irradiated tissue.IEEE J. Quantum Electron. QE-20, 1471–1481.

    Article  Google Scholar 

  • Welch, A. J. and G. D. Polhamus. 1984. Measurement and prediction of thermal injury in the retina of the rhesus monkey.IEEE Trans. Biomed. Eng. BME-31, 1471–1481.

    Google Scholar 

  • Welch, A. J., E. H. Wissler and L. A. Priebe. 1980. Significance of blood flow in calculations of temperature in laser-irradiated tissue.IEEE Trans. Biomed. Eng. BME-27, 164–166.

    Google Scholar 

  • Wissler, E. H. 1976. An analysis of chorioretinal thermal response to intense light exposure.IEEE Trans. Biomed. Eng. BME-23, 207–215.

    Google Scholar 

  • Zheltov, G., V. Glazkov and A. Podol'tzef. 1989. Retinal damage from intense visible light.Health Phys. 56, 625–630.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, C.R., Gerstman, B.S., Jacques, S.L. et al. Melanin granule model for laser-induced thermal damage in the retina. Bltn Mathcal Biology 58, 513–553 (1996). https://doi.org/10.1007/BF02460595

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460595

Keywords

Navigation