Elsevier

Surface Science

Volume 216, Issue 3, 2 June 1989, Pages 587-614
Surface Science

Computational studies of rapid laser induced desorption: A microscopic mechanism for selectivity

https://doi.org/10.1016/0039-6028(89)90397-XGet rights and content

Abstract

Classical molecular dynamics simulations are performed to demonstrate a possible mechanism for nonstatistical energy partitioning in desorption processes initiated by rapid surface heating. The model is a diatomic desorbed from a cold cluster of 19 Pt atoms upon a rapid increase in the cluster temperature. Physisorbed systems display vibrational energy product distributions indicative of energy flow mediated by the weak bond. Specifically, chemically bound diatomic molecules are desorbed vibrationally cold, due to inefficient vibrational energy flow between the physisorbed motion and the internal molecular vibration. On the other hand, for van der Waals bound diatomics ready energy flow is observed indicating that with establishment of an approximate frequency match between the physisorption mode and the internal vibration no bottleneck to energy transfer is evident. In general, the desorption process starting from a cold surface is indirect. Trajectories migrate along the surface resulting in effective translation-rotation coupling and broad rotational distribution of the products. For chemisorbed systems, the surface-absorbate mode does not influence strongly the nature of vibrational excitation in the internal mode of the admolecule, but rather direct interaction with the surface motions plays the primary role in any energy transfer. The systems studied exhibit a wide range of behaviors, from RRK-like, where energy is nearly equipartitioned, to highly selective, where the internal vibration of the admolecule is completely isolated due to the existence of bottlenecks. The mechanism which gives rise to these observations is discussed and the particular role of fluctuations, or impulsive interactions, is highlighted.

References (71)

  • K.N. Swamy et al.

    J. Chem. Phys.

    (1985)
  • D.A. Dixon et al.

    Ber. Bunseges. Phys. Chem.

    (1977)
    D.H. Levy

    Advan. Chem. Phys.

    (1981)
    K.C. Janda

    Advan. Chem. Phys.

    (1985)
  • R. Tembreull et al.

    Anal. Chem.

    (1986)
    R. Tembreull et al.

    Anal. Chem.

    (1987)
    B. Spengler et al.

    J. Phys. Chem.

    (1987)
  • A.A. Deckert et al.

    Surface Sci.

    (1987)
    A.A. Deckert et al.

    J. Chem. Phys.

    (1987)
  • D. Burgess et al.

    J. Chem. Phys.

    (1983)
    D. Burgess et al.

    J. Chem. Phys.

    (1986)
  • K.A. Pearlstine et al.

    Surface Sci.

    (1983)
  • R.R. Lucchese et al.

    J. Chem. Phys.

    (1984)
  • J.C. Tully et al.

    J. Chem. Phys.

    (1979)
    J.C. Tully

    J. Chem. Phys.

    (1980)
    J.C. Tully

    J. Chem. Phys.

    (1980)
    R. Lucchese et al.

    Surface Sci.

    (1983)
    J.C. Tully

    J. Vacuum Sci. Technol. A

    (1985)
    C.W. Muhlhausen et al.

    J. Chem. Phys.

    (1985)
  • S.A. Adelman et al.

    J. Chem. Phys.

    (1976)
    B.J. Garrison et al.

    Surface Sci.

    (1977)
    S.A. Adelman

    J. Chem. Phys.

    (1979)
  • C.V. Shank et al.

    Phys. Rev. Letters

    (1983)
  • R.R. Cavanaugh et al.

    Phys. Rev. Letters

    (1981)
    F. Frenkel et al.

    Chem. Phys. Letters

    (1982)
    H. Zacharias et al.

    Chem. Phys. Letters

    (1985)
    N. Kruse et al.

    J. Chem. Phys.

    (1988)
  • J.C. Polanyi et al.

    J. Chem. Phys.

    (1985)
    E. Zamir et al.

    Chem. Phys. Letters

    (1984)
  • J.W. Gadzuk et al.

    Phys. Rev. Letters

    (1982)
  • J.M. Bowman et al.

    Chem. Phys. Letters

    (1983)
  • R. Kosloff et al.

    J. Chem. Phys.

    (1984)
  • P.M. Agarwal et al.

    J. Chem. Phys.

    (1982)
    M. Jezercak et al.

    J. Chem. Phys.

    (1988)
    R.C. Mowery et al.

    J. Chem. Phys.

    (1986)
  • R.D. Levine et al.

    Molecular Reaction Dynamics and Chemical Reactivity

    (1987)
  • E.E. Nikitin
  • D.W. Noid et al.

    Ann. Rev. Phys. Chem.

    (1981)
    W.P. Reinhardt

    J. Phys. Chem.

    (1982)
  • P. Rogers et al.

    Chem. Phys. Letters

    (1982)
  • S.P. Wrigley et al.

    Chem. Phys. Letters

    (1984)
  • S.M. Lederman et al.

    Chem. Phys. Letters

    (1986)
  • T. Uzer et al.
  • R.B. Gerber et al.

    J. Chem. Phys.

    (1982)
    G.C. Schatz et al.

    J. Chem. Phys.

    (1983)
    I. Noorbatcha et al.

    J. Chem. Phys.

    (1984)
  • M.S. Child

    Faraday Disc. Chem. Soc.

    (1976)
    J.A. Beswick et al.

    Advan. Chem. Phys.

    (1981)
    G.E. Ewing

    Faraday Disc. Chem. Soc.

    (1982)

    J. Phys. Chem.

    (1987)
  • S.K. Gray et al.

    J. Phys. Chem.

    (1986)
  • R.S. Mackay et al.

    Physica D

    (1984)
    D. Bensimon et al.

    Physica

    (1984)
    R.C. Brown et al.

    Phys. Rev. Letters

    (1986)
    T. Geisel et al.

    Phys. Rev. Letters

    (1986)
  • F.F. Crim

    Ann. Rev. Phys. Chem.

    (1984)
  • D.J. Tannor et al.

    J. Chem. Phys.

    (1985)
    D.J. Tannor et al.

    J. Chem. Phys.

    (1986)
    S.A. Rice et al.

    Faraday Trans. II

    (1986)
    P. Brumer et al.

    Faraday Disc. Chem. Soc.

    (1986)
    S. Mukamel et al.

    J. Phys. Chem.

    (1985)

    Chem. Phys. Letters

    (1985)
    A. Lami

    Chem. Phys.

    (1987)
  • R.R. Hall

    J. Phys. Chem.

    (1987)
  • M.G. Sherman et al.

    Surface Sci.

    (1985)
    M.G. Sherman et al.

    Am. Chem. Soc. Symp. Ser.

    (1985)
    M.G. Sherman et al.

    Anal. Chim. Acta

    (1985)
    M.G. Sherman et al.

    Chem. Phys. Letters

    (1987)
  • F. Engleke et al.

    Anal. Chem.

    (1987)
    J.A. Hahn et al.

    J. Am. Chem. Soc.

    (1987)
    R.N. Zare et al.

    Bull. Chem. Soc. Japan

    (1988)
  • M.A. Pothumus et al.

    Anal. Chem.

    (1978)
    P.G. Kistemaker et al.G.J.Q. van der Peyl et al.

    Org. Mass Spectrom.

    (1981)
  • H. von Weyssenhoff et al.

    Z. Naturforsch. A

    (1985)
    J. Grotemeyer et al.

    J. Am. Chem. Soc.

    (1986)

    Org. Mass Spectrom.

    (1986)
    Intern. J. Mass Spectrom. Ion Phys., in...U. Boesl, J. Grotemeyer, K. Walter and E.W. Schlag, Anal. Instrumentation, in...
  • V.S. Antonov et al.

    JETP Letters

    (1983)
  • Cited by (14)

    View all citing articles on Scopus
    View full text