Elsevier

Microelectronic Engineering

Volume 178, 25 June 2017, Pages 98-103
Microelectronic Engineering

Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices

https://doi.org/10.1016/j.mee.2017.04.033Get rights and content
Under a Creative Commons license
open access

Highlights

  • Intrinsic bipolar resistance switching in silicon oxide ReRAM devices with very high cycling endurance is presented.

  • Columnar growth of amorphous silicon oxide films enhances resistance switching behavior.

  • A rougher oxide-electrode interface promotes columnar growth.

  • Rough interface can lead to more electrons being injected and the generation of Frenkel defects.

Abstract

In this paper, we present a study of intrinsic bipolar resistance switching in metal-oxide-metal silicon oxide ReRAM devices. Devices exhibit low electroforming voltages (typically − 2.6 V), low switching voltages (± 1 V for setting and resetting), excellent endurance of > 107 switching cycles, good state retention (at room temperature and after 1 h at 260 °C), and narrow distributions of switching voltages and resistance states. We analyse the microstructure of amorphous silicon oxide films and postulate that columnar growth, which results from sputter-deposition of the oxide on rough surfaces, enhances resistance switching behavior.

Keywords

ReRAM
Silicon oxide
Intrinsic
Resistance switching
STEM

Cited by (0)