Skip to main content
Log in

Carbon composite thermoplastic electrodes integrated with mini-printed circuit board for wireless detection of calcium ions

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Here, a smartphone-based portable sensing system is developed for real-time detection of Ca2+ ions in a variety of biofluids. A solid-contact calcium-selective electrode (Ca2+-ISE) consisting of an ion-selective membrane (ISM), carbon black nanomaterial and polystyrene-graphite nanoplatelets as a solid contact was fabricated. The polyvinylchloride (PVC)-based ISM was optimized using different plasticizers and ion-exchangers. Under optimized conditions, the solid contacts were electrochemically characterized by electrochemical impedance spectroscopy (EIS), chronopotentiometric and potentiometric measurements. The Ca2+-ISE showed a Nernst response with a slope of 31.2 ± 0.6 mV/decade in the concentration range from 0.1 M to 10−4 M Ca2+ with a limit of detection (LOD) of 1.0 × 10–5 M. In addition, the ISEs exhibited good selectivity to Ca2+ ions over various interfering electrolytes and metabolites. The Ca2+-ISEs were applied in human urine and, artificial serum and cerebrospinal fluid samples. The ISEs showed good recoveries between 90 and 105%, indicating potential applicability of these electrodes in biological fluids. The portable lab-made potentiometer provides wireless data signaling and transmission to a smartphone and final Ca2+ concentration display due to its customized software. Therefore, the developed smartphone-based sensing platform offers low cost (< $25), rapid, user-friendly detection of Ca2+ especially in resource-limited areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. G. Szalay, B. Martinecz, N. Lénárt, Z. Környei, B. Orsolits, L. Judák, E. Császár, R. Fekete, B.L. West, G. Katona, B. Rózsa, Á. Dénes, Nat. Commun. 7, 1–13 (2016)

    Article  CAS  Google Scholar 

  2. L. Zhao, Y. Jiang, H. Wei, Y. Jiang, W. Ma, W. Zheng, A. Cao, L. Mao, Anal. Chem. 91, 4421–4428 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. M. Brini, E. Carafoli, Physiol. Rev. 89, 1341–1378 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. J. Shim, T. Mukherjee, B.C. Mondal, T. Liu, G.C. Young, D.P. Wijewarnasuriya, U. Banerjee, Cell 155, 1141–1153 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. M. Rossol, M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schöneberg, M. Schaefer, U. Krügel, S. Smajilovic, H. Bräuner-Osborne, C. Baerwald, U. Wagner, Nat. Commun. 3, 1–9 (2012)

    Article  CAS  Google Scholar 

  6. A. Reunanen, P. Knekt, J. Marniemi, J. Mäki, J. Maatela, A. Aromaa, Eur. J. Clin. Nutr. 50, 431–437 (1996)

    CAS  PubMed  Google Scholar 

  7. M. Ketteler, G.A. Block, P. Evenepoel, M. Fukagawa, C.A. Herzog, L. McCann, S.M. Moe, R. Shroff, M.A. Tonelli, N.D. Toussaint, Ann. Intern. Med. 168, 422–430 (2018)

    Article  PubMed  Google Scholar 

  8. A. Farrar, Nurs. Clin. 53, 499–510 (2018)

    Google Scholar 

  9. J. Guimerà, A. Martínez, V. Tubau, A. Sabate, J.L. Bauza, A. Rios, M. Lopez, P. Piza, F. Grases, E. Pieras, World J. Urol. 38, 789–794 (2020)

    Article  PubMed  Google Scholar 

  10. R.P. Heaney, Annu. Rev. Nutr. 13, 287–316 (1993)

    Article  CAS  PubMed  Google Scholar 

  11. H.S. Huang, P.C. Liao, C.J. Liu, J. Clin. Med. 9, 729 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  12. M. Oyaert, J.R. Delanghe, J. Clin. Lab. Anal. 33, 22870 (2019)

    Article  CAS  Google Scholar 

  13. E. Mahoney, J. Kun, M. Smieja, Q. Fang, J. Electrochem. Soc. 167, 037518 (2019)

    Article  Google Scholar 

  14. F.M. Fortunato, M.A. Bechlin, J.A.G. Neto, G.L. Donati, B.T. Jones, Microchem. J. 122, 63–69 (2015)

    Article  CAS  Google Scholar 

  15. D.V. Babos, V.C. Costa, M.A. Sperança, E.R. Pereira-Filho, Microchem. J. 137, 272–276 (2018)

    Article  CAS  Google Scholar 

  16. B. Han, M. Ge, H. Zhao, Y. Yan, J. Zeng, T. Zhang, W. Zhou, J. Zhang, J. Wang, C. Zhang, Clin. Chem. Lab. Med. (CCLM) 56, 51–58 (2018)

    Article  CAS  Google Scholar 

  17. M. Dębosz, J. Kozma, R. Porada, M. Wieczorek, J. Paluch, R.E. Gyurcsányi, J. Migdalski, P. Kościelniak, Talanta 232, 122491 (2021)

    Article  PubMed  CAS  Google Scholar 

  18. G. Hunter, H.V. Smith, Nature 186, 161–162 (1960)

    Article  CAS  PubMed  Google Scholar 

  19. V.A. Murphy, Q.R. Smith, S.I. Rapoport, 47, 1735–1741 (1986).

  20. A.D. Chapp, S. Schum, J.E. Behnke, T. Hahka, M.J. Huber, E. Jiang, R.A. Larson, Z. Shan, Q.H. Chen, Physiol. Rep. 6, 13666 (2018)

    Article  CAS  Google Scholar 

  21. S.T. Keene, D. Fogarty, R. Cooke, C.D. Casadevall, A. Salleo, O. Parlak, Adv. Healthc. Mater. 8, 1901321 (2019)

    Article  CAS  Google Scholar 

  22. S.R. Ankireddy, J. Kim, Sens. Actu. B Chem. 255, 3425–3433 (2018)

    Article  CAS  Google Scholar 

  23. P. Bühlmann, L.D. Chen, Ion-selective electrodes with ionophore-doped sensing membranes. Supramo. Chem. From Mol. Nanomater. 5, 2539 (2012)

    Google Scholar 

  24. J. Bobacka, A. Ivaska, A. Lewenstam, Chem. Rev. 108, 329–351 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. M.P. Mousavi, A. Ainla, E.K. Tan, M.K. Abd El-Rahman, Y. Yoshida, L. Yuan, H.H. Sigurslid, N. Arkan, M.C. Yip, C.K. Abrahamsson, Lab Chip, 18, 2279–2290 (2018)

  26. P. Kumar, Anal. Bioanal. Electrochem. 14, 179–190 (2022)

    CAS  Google Scholar 

  27. C. Ocaña, N. Abramova, A. Bratov, T. Lindfors, J. Bobacka, Talanta 186, 279–285 (2018)

    Article  PubMed  CAS  Google Scholar 

  28. K.M. Clark, C.S. Henry, Electroanalysis 33, 1–9 (2021)

    Article  CAS  Google Scholar 

  29. C.P. McCord, B. Summers, C.S. Henry, Electrochim. Acta 393, 139069 (2021)

    Article  CAS  Google Scholar 

  30. T. Ozer, C. McCord, B.J. Geiss, D. Dandy, C.S. Henry, J. Electrochem. Soc. 168, 047509 (2021)

    Article  CAS  Google Scholar 

  31. C.P. McCord, T. Ozer, C.S. Henry, Anal. Methods 13, 5056–5064 (2021)

    Article  CAS  PubMed  Google Scholar 

  32. L.A. Pradela-Filho, E. Noviana, D.A. Araújo, R.M. Takeuchi, A.L. Santos, C.S. Henry, ACS Sens. 5, 274–281 (2020)

    Article  CAS  PubMed  Google Scholar 

  33. K.J. Klunder, Z. Nilsson, J.B. Sambur, C.S. Henry, J. Am. Chem. Soc. 139, 12623–12631 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. C.P. McCord, B. Summers, C. Henry, ChemElectroChem 9, 1–8 (2022)

    Article  CAS  Google Scholar 

  35. R. Kour, S. Arya, S.-J. Young, V. Gupta, P. Bandhoria, A. Khosla, J. Electrochem. Soc. 167, 037555 (2020)

    Article  CAS  Google Scholar 

  36. F. Arduini, S. Cinti, V. Mazzaracchio, V. Scognamiglio, A. Amine, D. Moscone, Biosens. Bioelectron. 156, 112033 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. F.Q. Ionta, F.L. Mendonça, G.C. de Oliveira, C.R.B. de Alencar, H.M. Honorio, A.C. Magalhaes, D. Rios, J. Dent. 42, 175–179 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. J. Ding, B. Li, L. Chen, W. Qin, Angew. Chem. Int. Ed. 55, 13033–13037 (2016)

    Article  CAS  Google Scholar 

  39. K.F. Foley, L. Boccuzzi, Lab. Med. 41, 683–686 (2010)

    Article  Google Scholar 

  40. A.D. McNaught, A. Wilkinson, Compendium of chemical terminology, Blackwell Science Oxford (1997).

  41. N. Lenar, B. Paczosa-Bator, R. Piech, A. Królicka, Electrochim. Acta 322, 134718 (2019)

    Article  CAS  Google Scholar 

  42. M. Fibbioli, W.E. Morf, M. Badertscher, N.F. de Rooij, E. Pretsch, Electroanal. Int. J. Devot. Fund. Pract. Aspects Electroanal, 12, 1286–1292 (2000)

  43. M. Pięk, B. Paczosa-Bator, J. Smajdor, R. Piech, Electrochim. Acta 283, 1753–1762 (2018)

    Article  CAS  Google Scholar 

  44. J. Hu, X.U. Zou, A. Stein, P. Bühlmann, Anal. Chem. 86, 7111–7118 (2014)

    Article  CAS  PubMed  Google Scholar 

  45. G.A. Crespo, S. Macho, F.X. Rius, Anal. Chem. 80, 1316–1322 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. F. Li, J. Ye, M. Zhou, S. Gan, Q. Zhang, D. Han, L. Niu, Analyst 137, 618–623 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. J. Ping, Y. Wang, K. Fan, W. Tang, J. Wu, Y. Ying, J. Mater. Chem. B 1, 4781–5479 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. M.A. Fierke, C.-Z. Lai, P. Buhlmann, A. Stein, Anal. Chem. 82, 680–688 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. V. Mazzaracchio, A. Serani, L. Fiore, D. Moscone, F. Arduini, Electrochim. Acta 394, 139050 (2021)

    Article  CAS  Google Scholar 

  50. A. Safavi, N. Maleki, M.M. Doroodmand, Anal. Chim. Acta 675, 207–212 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. A.K. Singh, S. Mehtab, Sens. Actu. B Chem. 123, 429–436 (2007)

    Article  CAS  Google Scholar 

  52. P. Anker, E. Wieland, D. Ammann, R.E. Dohner, R. Asper, W. Simon, Anal. Chem. 53, 1970–1974 (1981)

    Article  CAS  PubMed  Google Scholar 

  53. T. Jiang, B. Yin, X. Liu, L. Yang, H. Pang, J. Song, S. Wu, Analyst 147, 1144–1151 (2022)

    Article  CAS  PubMed  Google Scholar 

  54. M.H. Lee, C.L. Yoo, J.S. Lee, I.-S. Cho, B.H. Kim, G.S. Cha, H. Nam, Anal. Chem. 74, 2603–2607 (2002)

    Article  CAS  PubMed  Google Scholar 

  55. J. Artigas, A. Beltran, C. Jiménez, J. Bartrolı́, J. Alonso, Anal. Chim. Acta, 426, 3–10 (2001).

  56. A.K. Covington, E. Totu, Analyst 121, 1811–1815 (1996)

    Article  CAS  Google Scholar 

  57. T. Sokalski, M. Maj-Żurawska, A. Hulanicki, Microchim. Acta 103, 285–291 (1991)

    Article  Google Scholar 

  58. N.H. Al-Hardan, M.A.A. Hamid, M. Firdaus-Raih, L.K. Keng, E.M. AL-Khalqi, A. Jalar, J. Mater. Sci. Mater. Electron. 32, 20240–20251 (2021).

  59. C. Jiang, Y. Yao, Y. Cai, J. Ping, Sens. Actu. B Chem. 283, 284–289 (2019)

    Article  CAS  Google Scholar 

  60. Laboratory Requirements, Code of Federal Regulations, Section 493.931, Title 42, Chapter IV, U. S. Government Publishing Office, 2012.

Download references

Acknowledgements

I would like to thank Prof. Dr. Charles S. Henry for providing resources for this work and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Ozer.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, T. Carbon composite thermoplastic electrodes integrated with mini-printed circuit board for wireless detection of calcium ions. ANAL. SCI. 38, 1233–1243 (2022). https://doi.org/10.1007/s44211-022-00164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00164-w

Keywords

Navigation