Skip to main content
Log in

Functional characterization of xanthorhodopsin in Salinivibrio socompensis, a novel halophile isolated from modern stromatolites

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A putative xanthorhodopsin-encoding gene, XR34, was found in the genome of the moderately halophilic gammaproteobacterium Salinivibrio socompensis S34, isolated from modern stromatolites found on the shore of Laguna Socompa (3570 m), Argentina Puna. XR-encoding genes were clustered together with genes encoding X-carotene, retinal (vitamin-A aldehyde), and carotenoid biosynthesis enzymes while the carotene ketolase gene critical for the salinixanthin antenna compound was absent. To identify its functional behavior, we herein overexpressed and characterized this intriguing microbial rhodopsin. Recombinant XR34 showed all the salient features of canonical microbial rhodopsin and covalently bound retinal as a functional chromophore with λmax = 561 nm (εmax ca. 60,000 M−1 cm−1). Two canonical counterions with pK values of around 6 and 3 were identified by pH titration of the recombinant protein. With a recovery time of approximately half an hour in the dark, XR34 shows light–dark adaptation shifting the absorption maximum from 551 to 561 nm. Laser-flash induced photochemistry at pH 9 (deprotonated primary counterion) identified a photocycle starting with a K-like intermediate, followed by an M-state (λmax ca. 400 nm, deprotonated Schiff base), and a final long wavelength-absorbing N- or O-like intermediate before returning to the parental 561 nm-state. Initiating the photocycle at pH 5 (protonated counterion) yields only bathochromic intermediates, due to the lacking capacity of the counterion to accept the Schiff base proton. Illumination of the membrane-embedded protein yielded a capacitive transport current. The presence of the M-intermediate under these conditions was demonstrated by a blue light-induced shunt process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The sequence of the xantorhodopsin protein-coding gene from Salinivibrio socompensis sp. S34 is available at GenBank Acc. AGR66236.1 together with all sequences of rhodopsin-related proteins retrieved from public databases via Uniprot (https://www.uniprot.org/blast/) and MicRhoDE (http://application.sb-roscoff.fr/micrhode/). All other raw data from results presented in the manuscript are available upon request.

References

  1. Spudich, J. L. (2006). The multitalented microbial sensory rhodopsins. Trends in Microbiology, 14, 480–487. https://doi.org/10.1016/j.tim.2006.09.005.

    Article  CAS  PubMed  Google Scholar 

  2. Gómez-Consarnau, L., Raven, J. A., Levine, N. M., et al. (2019). Microbial rhodopsins are major contributors to the solar energy captured in the sea. Science Advances, 5, 1–7. https://doi.org/10.1126/sciadv.aaw8855.

    Article  CAS  Google Scholar 

  3. Oesterhelt, D., & Stoeckenius, W. (1971). Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Biology, 233, 149–152. https://doi.org/10.1038/newbio233149a0.

    Article  CAS  PubMed  Google Scholar 

  4. Bamann, C., Bamberg, E., Wachtveitl, J., & Glaubitz, C. (2014). Proteorhodopsin. Biochimica et Biophysica Acta (BBA) Bioenergetics, 1837, 614–625. https://doi.org/10.1016/j.bbabio.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  5. Balashov, S. P., Imasheva, E. S., Boichenko, V. A., et al. (2005). Xanthorhodopsin: A proton pump with a light-harvesting carotenoid antenna. Science (80-), 309, 2061–2064. https://doi.org/10.1126/science.1118046.

    Article  CAS  Google Scholar 

  6. Imasheva, E. S., Balashov, S. P., Choi, A. R., et al. (2009). Reconstitution of gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry, 48, 10948–10955. https://doi.org/10.1021/bi901552x.

    Article  CAS  PubMed  Google Scholar 

  7. Balashov, S. P., Imasheva, E. S., Choi, A. R., et al. (2010). Reconstitution of gloeobacter rhodopsin with echinenone: Role of the 4-Keto group. Biochemistry, 49, 9792–9799. https://doi.org/10.1021/bi1014166.

    Article  CAS  PubMed  Google Scholar 

  8. Vollmers, J., Voget, S., Dietrich, S., et al. (2013). Poles apart: Arctic and Antarctic octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS ONE, 8, e63422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mongodin, E. F., Nelson, K. E., Daugherty, S., et al. (2005). The genome of Salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea. Proceedings of the National Academy of Sciences United States of America, 102, 18147–18152. https://doi.org/10.1073/pnas.0509073102.

    Article  CAS  Google Scholar 

  10. Albarracín, V. H., Kurth, D., Ordoñez, O. F., et al. (2015). High-up: A remote reservoir of microbial extremophiles in Central Andean wetlands. Frontiers in Microbiology, 6, 1404. https://doi.org/10.3389/fmicb.2015.01404.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Albarracín, V. H., Gärtner, W., & Farias, M. E. (2016). Forged under the sun: Life and art of extremophiles from Andean Lakes. Photochemistry and Photobiology, 92, 14–28. https://doi.org/10.1111/php.12555.

    Article  CAS  PubMed  Google Scholar 

  12. Kurth, D., Belfiore, C., Gorriti, M. F., et al. (2015). Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Frontiers in Microbiology, 6, 1–18. https://doi.org/10.3389/fmicb.2015.00328.

    Article  Google Scholar 

  13. Farías, M. E., Rascovan, N., Toneatti, D. M., et al. (2013). The discovery of stromatolites developing at 3570 m above sea level in a high-altitude Volcanic Lake Socompa, Argentinean Andes. PLoS ONE 8, e53497. https://doi.org/10.1371/journal.pone.0053497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bequer Urbano, S., Albarracín, V. H., Ordoñez, O. F., et al. (2013). Lipid storage in high-altitude Andean Lakes extremophiles and its mobilization under stress conditions in Rhodococcus sp. A5, a UV-resistant actinobacterium. Extremophiles, 17, 217–227. https://doi.org/10.1007/s00792-012-0508-2.

    Article  CAS  PubMed  Google Scholar 

  15. Farías, M. E., Contreras, M., Rasuk, M. C., et al. (2014). Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles, 18, 311–329. https://doi.org/10.1007/s00792-013-0617-6.

    Article  CAS  PubMed  Google Scholar 

  16. Rasuk, M. C., Kurth, D., Flores, M. R., et al. (2014). Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microbial Ecology, 68, 483–494. https://doi.org/10.1007/s00248-014-0431-4.

    Article  CAS  PubMed  Google Scholar 

  17. Ordoñez, O., Lanzarotti, E., Kurth, D., et al. (2015). Genome comparison of two exiguobacterium strains from high altitude Andean Lakes with different arsenic resistance: Identification and 3D modeling of the Acr3 efflux pump. Frontiers in Environmental Science, 3, 50.

    Article  Google Scholar 

  18. Toneatti, D. M., Albarracín, V. H., Flores, M. R., et al. (2017). Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites. Frontiers in Microbiology, 8, 1–12. https://doi.org/10.3389/fmicb.2017.00646.

    Article  Google Scholar 

  19. Alonso-Reyes, D. G., Farias, M. E., & Albarracín, V. H. (2020). Uncovering cryptochrome/photolyase gene diversity in aquatic microbiomes exposed to diverse UV-B regimes. Aquatic Microbial Ecology, 85, 141–154. https://doi.org/10.3354/AME01947.

    Article  Google Scholar 

  20. Alonso-Reyes, D. G., Galván, S., Irazoqui, J. M., et al. (2022). Dissecting light sensing and metabolic pathways on the millimeter scale in high-altitude modern stromatolites. Microbial Ecology. https://doi.org/10.1007/s00248-022-02112-7.

    Article  PubMed  Google Scholar 

  21. Albarracín, V. H., Kraiselburd, I., Bamann, C., et al. (2016). Functional green-tuned proteorhodopsin from modern stromatolites. PLoS ONE, 11, 1–18. https://doi.org/10.1371/journal.pone.0154962.

    Article  CAS  Google Scholar 

  22. Galisteo, C., Sánchez-Porro, C., de la Haba, R. R., et al. (2019). Characterization of Salinivibrio socompensis sp. nov., A New Halophilic Bacterium Isolated from the High-Altitude Hypersaline Lake Socompa, Argentina. Microorganisms. 7, 241. https://doi.org/10.3390/microorganisms7080241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de la Haba, R. R., López-Hermoso, C., Sánchez-Porro, C., et al. (2019). Comparative genomics and phylogenomic analysis of the genus Salinivibrio. Frontiers in Microbiology, 10, 1–15. https://doi.org/10.3389/fmicb.2019.02104.

    Article  Google Scholar 

  24. Gorriti, M. F., Dias, G. M., Chimetto, L. A., et al. (2014). Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics, 15, 473. https://doi.org/10.1186/1471-2164-15-473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scharf, B., Hess, B., & Engelhard, M. (1992). Chromophore of sensory rhodopsin II from Halobacterium halobium. Biochemistry, 31, 12486–12492. https://doi.org/10.1021/bi00164a027.

    Article  CAS  PubMed  Google Scholar 

  26. Rozewicki, J., Li, S., Amada, K. M., et al. (2019). MAFFT-DASH: Integrated protein sequence and structural alignment. Nucleic Acids Research, 47, W5–W10. https://doi.org/10.1093/nar/gkz342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drozdetskiy, A., Cole, C., Procter, J., & Barton, G. J. (2015). JPred4: A protein secondary structure prediction server. Nucleic Acids Research, 43, W389–W394. https://doi.org/10.1093/nar/gkv332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettersen, E. F., Goddard, T. D., Huang, C. C., et al. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612. https://doi.org/10.1002/jcc.20084.

    Article  CAS  PubMed  Google Scholar 

  30. Berman, H. M., Bhat, T. N., Bourne, P. E., et al. (2000). The Protein Data Bank and the challenge of structural genomics. Natural Structural Biology, 7, 957–959. https://doi.org/10.1038/80734.

    Article  CAS  Google Scholar 

  31. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3.

    Article  PubMed  Google Scholar 

  32. Morizumi, T., Ou, W. L., Van Eps, N., et al. (2019). X-ray crystallographic structure and oligomerization of gloeobacter rhodopsin. Science and Reports, 9, 1–14. https://doi.org/10.1038/s41598-019-47445-5.

    Article  CAS  Google Scholar 

  33. Hartmut, L., Brigitte, S., Jason, S., et al. (2008). Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proceedings of the National Academy of Sciences USA, 105, 16561–16565. https://doi.org/10.1073/pnas.0807162105.

    Article  Google Scholar 

  34. Gushchin, I., & Gordeliy, V. (2018). Microbial rhodopsins. SubCellular Biochemistry, 87, 19–56. https://doi.org/10.1007/978-981-10-7757-9_2.

    Article  CAS  PubMed  Google Scholar 

  35. Kato, H. E., Inoue, K., Abe-Yoshizumi, R., et al. (2015). Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature, 521, 48–53. https://doi.org/10.1038/nature14322.

    Article  CAS  PubMed  Google Scholar 

  36. Tsukamoto, T., Mizutani, K., Hasegawa, T., et al. (2016). X-ray crystallographic structure of thermophilic rhodopsin: Implications for high thermal stability and optogenetil function. Journal of Biological Chemistry, 291, 12223–12232. https://doi.org/10.1074/jbc.M116.719815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tamogami, J., Kikukawa, T., Nara, T., et al. (2012). Photoinduced proton release in proteorhodopsin at low pH: The possibility of a decrease in the pKa of Asp227. Biochemistry, 51, 9290–9301. https://doi.org/10.1021/bi300940p.

    Article  CAS  PubMed  Google Scholar 

  38. Balashov, S. P., & Lanyi, J. K. (2007). Xanthorhodopsin: Proton pump with a carotenoid antenna. Cellular and Molecular Life Sciences, 64, 2323–2328. https://doi.org/10.1007/s00018-007-7167-y.

    Article  CAS  PubMed  Google Scholar 

  39. Balashov, S. P., Imasheva, E. S., Govindjee, R., & Ebrey, T. G. (1996). Titration of aspartate-85 in bacteriorhodopsin: What it says about chromophore isomerization and proton release. Biophysical Journal, 70, 473–481. https://doi.org/10.1016/S0006-3495(96)79591-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bamberg, E., Apell, H.-J., Dencher, N. A., et al. (1979). Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophysics of Structure and Mechanism, 5, 277–292. https://doi.org/10.1007/BF02426663.

    Article  CAS  Google Scholar 

  41. Karvaly, B., & Dancsházy, Z. (1977). Bacteriorhodopsin: A molecular photoelectric regulator Quenching of photovoltaic effect of bimolecular lipid membranes containing bacteriorhodopsin by blue light. FEBS Letters, 76, 36–40. https://doi.org/10.1016/0014-5793(77)80115-4.

    Article  CAS  PubMed  Google Scholar 

  42. Balashov, S. P., Petrovskaya, L. E., Lukashev, E. P., et al. (2012). Aspartate-histidine interaction in the retinal Schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum. Biochemistry, 51, 5748–5762. https://doi.org/10.1021/bi300409m.

    Article  CAS  PubMed  Google Scholar 

  43. Vignale, F. A., Lencina, A. I., Stepanenko, T. M., et al. (2022). Lithifying and non-lithifying microbial ecosystems in the Wetlands and Salt Flats of the Central Andes. Microbial Ecology, 83, 1–17. https://doi.org/10.1007/s00248-021-01725-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generous financial support by PICT RAICES 2019–3216 projects. CB thanks Anja Becker for technical assistance and is grateful for the continuous support from the Max-Planck-Society. WG thanks the University of Leipzig for hosting him as a visitor. VHA is a staff researcher from the National Research Council (CONICET) in Argentina. DA and MG were the recipients of doctoral/postdoctoral fellowships from CONICET.

Author information

Authors and Affiliations

Authors

Contributions

MG, DA, PW, VHA, and CB performed the experiments. VHA, MEF, WG, and EB designed the project. All authors contributed to the generation of the manuscript.

Corresponding author

Correspondence to Virginia Helena Albarracín.

Ethics declarations

Conflict of interest

The authors declare to have no competing interests regarding this manuscript.

Additional information

This paper is dedicated to Silvia Braslavsky, a pioneer in photobiology and photobiophysics, on the occasion of her 80th birthday. The authors want to congratulate Silvia on her anniversary and like to acknowledge her great contribution to the establishment of a German-Argentinean research group in the photo-microbiology of Andean extremophiles. Likewise, we are thankful for her warm hospitality in her house in Mulheim an der Ruhr, where delicious food, perfect wine, and science tertulia were always a lovely blend.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorriti, M.F., Bamann, C., Alonso-Reyes, D.G. et al. Functional characterization of xanthorhodopsin in Salinivibrio socompensis, a novel halophile isolated from modern stromatolites. Photochem Photobiol Sci 22, 1809–1823 (2023). https://doi.org/10.1007/s43630-023-00412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00412-6

Keywords

Navigation