Skip to main content

Advertisement

Log in

Phenylene Bis-Diphenyltriazine (TriAsorB), a new sunfilter protecting the skin against both UVB + UVA and blue light radiations

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Sunlight induces actinic keratosis, skin cancers and photoaging. Photoprotection is thus a major issue in public health to prevent the harmful effects of solar ultraviolet (UV) radiations. Recent data have shown that the visible (VIS) and infrared (IR) radiations can lead to skin damage by oxidative stress, suggesting that a balanced protection across the entire spectrum of sunlight is necessary to prevent cutaneous alterations. In this context, we developed a new generation of sunfilter called Phenylene Bis-Diphenyltriazine or TriAsorB (CAS N°55514-22-2). The aim of the present study was to assess the photoprotective efficacy of TriAsorB from UV to IR light. Spectrophotometric assays were performed to measure absorption and reflectance of TriAsorB in the different spectral ranges of sunlight: UV, VIS including blue light or high energy visible (HEV) and IR. DNA damage was evaluated using reconstructed human epidermis (RHE): 8-hydroxy-2′-deoxyguanosine (8OHdG) in response to HEV exposure, pyrimidine dimers (CPDs) and (6-4) photoproducts following solar-simulated radiation (SSR). TriAsorB is a broad spectrum UVB + UVA filter including long UVA. Interestingly, it also absorbs VIS radiations, especially in the HEV region. These radiations are also reflected. Protection in the IR spectral range is weak. Furthermore, the sunfilter specifically protects the skin against the oxidative lesions 8OHdG induced by HEV and prevents SSR-induced DNA damage. Thus, TriAsorB is an innovative sunfilter that might be used in sun care products for skin photoprotection from UV to VIS radiations. Finally, it prevents sunlight genotoxicity and protected the skin against solar radiations, especially blue light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

UV:

Ultraviolet light

VIS:

Visible light

HEV:

High energy visible light

IR:

Infrared light

SSR:

Solar-simulated radiation

SCCS:

Scientific Committee on Consumer Safety

CW:

Critical wavelength

HPLC–MS/MS:

HPLC associated with tandem mass spectrometry

8OHdG:

8-Hydroxy-2′-deoxyguanosine

CPD:

Cyclobutane pyrimidine dimer

64PP:

Pyrimidine (6-4) pyrimidone photoproducts

DEW:

Dewar valence isomer

ORS:

Outer root sheath

RHE:

Reconstructed human epidermis

ROS:

Reactive oxygen species

INCI:

International Nomenclature of Cosmetic Ingredients

References

  1. Yaar, M., & Gilchrest, B. A. (2007). Photoageing: Mechanism, prevention and therapy. British Journal of Dermatology, 157, 874–887.

    Article  CAS  Google Scholar 

  2. Naylor, E. C., Watson, R. E. B., & Sherratt, M. J. (2011). Molecular aspects of skin ageing. Maturitas, 69, 249–256.

    Article  CAS  PubMed  Google Scholar 

  3. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153, 1194–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Narayanan, D. L., Saladi, R. N., & Fox, J. L. (2010). Ultraviolet radiation and skin cancer. International Journal of Dermatology, 49, 978–986.

    Article  PubMed  Google Scholar 

  5. Pfeifer, G. P., & Besaratinia, A. (2012). UV wavelength dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochemical & Photobiological Sciences, 11, 90–97.

    Article  CAS  Google Scholar 

  6. Ratushny, V., Gober, M. D., Hick, R., Ridky, T. W., & Seykora, J. T. (2012). From keratinocyte to cancer: The pathogenesis and modeling of cutaneous squamous cell carcinoma. The Journal of Clinical Investigation, 122, 464–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goulart, J. M., & Wang, S. Q. (2010). Knowledge, motivation, and behavior patterns of the general public towards sun protection. Photochemical & Photobiological Sciences, 9, 432–438.

    Article  CAS  Google Scholar 

  8. Leiter, U., Eigentler, T., & Garbe, C. (2014). Epidemiology of skin cancer. Advances in Experimental Medicine and Biology, 810, 120–140.

    PubMed  Google Scholar 

  9. Apalla, Z., Lallas, A., Sotiriou, E., Lazaridou, E., & Ioannides, D. (2017). Epidemiological trends in skin cancer. Dermatology Practical & Conceptual, 7(2), 1–6.

    Article  Google Scholar 

  10. Lai, V., Cranwell, W., & Sinclair, R. (2018). Epidemiology of skin cancer in the mature patient. Clinics in Dermatology, 36, 167–176.

    Article  PubMed  Google Scholar 

  11. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA: A Cancer Journal of Clinicians, 68, 394–424.

    Google Scholar 

  12. Osterwalder, U., Sohn, M., & Herzog, B. (2014). Global state of sunscreens. Photodermatology, Photoimmunology and Photomedicine, 30, 62–80.

    Article  PubMed  Google Scholar 

  13. Iannacone, M. R., Hughes, M. C. B., & Green, A. (2014). Effects of sunscreen on skin cancer and photoaging. Photodermatology, Photoimmunology and Photomedicine, 30, 55–61.

    Article  PubMed  Google Scholar 

  14. Young, A. R., Claveau, J., & Rossi, A. B. (2017). Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. Journal of the American Academy of Dermatology, 76, S100-109.

    Article  CAS  PubMed  Google Scholar 

  15. Ziegler, A., Leffel, D. J., Kunala, S., Sharma, H. W., Shapiro, P. E., Bale, A. E., & Brash, D. E. (1993). Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proceedings of the National academy of Sciences of the United States of America, 90, 4216–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical & Photobiological Sciences, 17, 1816–1841.

    Article  CAS  Google Scholar 

  17. Perdiz, D., Grof, P., Mezzina, M., Nikaido, O., Moustacchi, E., & Sage, E. (2000). Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis. Journal of Biological Chemistry, 275, 26732–26742.

    Article  CAS  Google Scholar 

  18. Douki, T., & Sage, E. (2016). Dewar valence isomers, the third type of environmentally relevant DNA photoproducts induced by solar radiation. Photochemical & Photobiological Sciences, 15, 24–30.

    Article  CAS  Google Scholar 

  19. Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences of the United States of America, 103, 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bickers, D. R., & Athar, M. (2006). Oxidative stress in the pathogenesis of skin disease. The Journal of Investigative Dermatology, 126, 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  21. Birch-Machin, M. A., & Bowman, A. (2016). Oxidative stress and ageing. British Journal of Dermatology, 175, S26-29.

    Article  CAS  Google Scholar 

  22. saes da Silva, E., Tavares, R., da Silva Paulitsch, F., & Zhang, L. (2018). Use of sunscreen and risk of melanoma and non-melanoma skin cancer: A systemic review and meta-analysis. European Journal of Dermatology, 28, 186–201.

    Article  Google Scholar 

  23. Green, A., Williams, G., Neale, R., Hart, V., Leslie, D., Parsons, P., Marks, G. C., Gaffney, P., Battistutta, D., Frost, C., Lang, C., & Russell, A. (1999). Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: A randomised controlled trial. Lancet, 354, 723–729.

    Article  CAS  PubMed  Google Scholar 

  24. Green, A. C., Williams, G. M., Logan, V., & Strutton, G. M. (2011). Reduced melanoma after regular sunscreen use: Randomized trial follow-up. Journal of Clinical Oncology, 29, 257–263.

    Article  CAS  PubMed  Google Scholar 

  25. van der Pols, J. C., Williams, G. M., Pandeya, N., Logan, V., & Green, A. C. (2006). Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiology, Biomarkers & Prevention, 15, 2546–2548.

    Article  Google Scholar 

  26. Dupont, E., Gomez, J., & Bilodeau, D. (2013). Beyond UV radiation: A skin under challenge. International Journal of Cosmetic Science, 35, 224–234.

    Article  CAS  PubMed  Google Scholar 

  27. Grether-Beck, S., Marini, A., Jaenicke, T., & Krutmann, J. (2014). Photoprotection in human skin beyond ultraviolet radiation. Photodermatology, Photoimmunology and Photomedicine, 30, 167–174.

    Article  PubMed  Google Scholar 

  28. Zastrow, L., Meinke, M. C., Albrecht, S., Patzeit, A., & Lademann, J. (2017). From UV protection to protection in the whole spectral range of the solar radiation: New aspects of sunscreen development. Advances in Experimental Medicine and Biology, 996, 311–318.

    Article  CAS  PubMed  Google Scholar 

  29. Zastrow, L., Groth, N., Klein, F., Kockott, D., Lademann, J., Renneberg, R., & Ferrero, L. (2009). The missing link–light-induced (280–1.600 nm) free radical formation in human skin. Skin Pharmacology and Physiology, 22, 31–44.

    Article  CAS  PubMed  Google Scholar 

  30. Avci, P., Gupta, A., Sadasivam, M., Vecchio, D., Pam, Z., Pam, N. & Hamblin, M. R. (2013). Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. In Semin. Cutan. Med. Surg. (Vol. 32, no. 1, pp. 41–52).

  31. Narla, S., Kohli, I., Hamzavi, I. H., & Lim, H. W. (2020). Visible light in photodermatology. Photochemical & Photobiological Sciences, 19, 99–104.

    Article  CAS  Google Scholar 

  32. Liebmann, J., Born, M., & Kolb-Bachofen, V. (2010). Blue-light irradiation regulates proliferation and differentiation in human skin cells. The Journal of Investigative Dermatology, 130, 259–269.

    Article  CAS  PubMed  Google Scholar 

  33. Godley, B. F., Shamsi, F. A., Liang, F. Q., Jarrett, S. G., Davies, S., & Boulton, M. (2005). Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. Journal of Biological Chemistry, 280, 21061–21066.

    Article  CAS  Google Scholar 

  34. Nakashima, Y., Ohta, S., & Wolf, A. M. (2017). Blue light-induced oxidative stress in live skin. Free Radical Biology & Medicine, 108, 300–310.

    Article  CAS  Google Scholar 

  35. Mann, T., Eggers, K., Rippke, F., Tesch, M., Buerger, A., Darvin, M. E., Schanzer, S., Meinke, M. C., Lademann, J., & Kolbe, L. (2020). High-energy visible light at ambient doses and intensities induces oxidative stress of skin—Protective effects of the antioxidant and Nrf2 inducer licochalcone A in vitro and in vivo. Photodermatology, Photoimmunology and Photomedicine, 36, 135–144.

    Article  CAS  PubMed  Google Scholar 

  36. Denda, M., & Fuziwara, S. (2008). Visible radiation affects epidermal permeability barrier recovery: Selective effects of red and blue Light. The Journal of Investigative Dermatology, 128, 1335–1336.

    Article  CAS  PubMed  Google Scholar 

  37. Falcone, D., Uzunbajakava, N. E., van Abeelen, F., Oversluizen, G., Peppelman, M., van Erp, P. E. J., & van de Kerkhof, P. C. M. (2018). Effects of blue light on inflammation and skin barrier recovery following acute perturbation. Pilot study in healthy human subjects. Photodermatology, Photoimmunology & Photomedicine, 34, 184–193.

    Article  CAS  Google Scholar 

  38. Regazzetti, C., Sormani, L., Debayle, D., Bernerd, F., Tulic, M. K., De Donatis, G. M., Chignon-Sicard, B., Rocchi, S., & Passeron, T. (2018). Melanocytes sense blue light and regulate pigmentation through opsin-3. The Journal of Investigative Dermatology, 138, 171–178.

    Article  CAS  PubMed  Google Scholar 

  39. Dong, K., Goyarts, E. C., Pelle, E., Trivero, J., & Pernodet, N. (2019). Blue light disrupts the circadian rhythm and create damage in skin cells. International Journal of Cosmetic Science, 41, 558–562.

    Article  CAS  PubMed  Google Scholar 

  40. Schroeder, P., Calles, C., Benesova, T., Macaluso, F., & Krutmann, J. (2010). Photoprotection beyond ultraviolet radiation—Effective sun protection has to include protection against infrared A radiation-induced skin damage. Skin Pharmacology and Physiology, 23, 15–17.

    Article  CAS  PubMed  Google Scholar 

  41. Krutmann, J., Morita, A., & Chung, J. H. (2012). Sun exposure: What molecular photodermatology tells us about its good and bad sides. The Journal of Investigative Dermatology, 132, 976–984.

    Article  CAS  PubMed  Google Scholar 

  42. Akhalaya, M. Y., Maksimov, G. V., Rubin, A. B., Lademann, J., & Darvin, M. E. (2014). Molecular action mechanisms of solar infrared radiation and heat on human skin. Ageing Research Reviews, 16, 1–11.

    Article  CAS  PubMed  Google Scholar 

  43. Kumar, R., Sirohi, T. S., Singh, H., Yadav, R., Roy, R. K., Chaudhary, A., & Pandeya, S. N. (2014). 1,2,4-triazine analogs as novel class of therapeutic agents. Mini Reviews in Medicinal Chemistry., 14, 168–207.

    Article  CAS  PubMed  Google Scholar 

  44. Cascioferro, S., Parrino, B., Spano, V., Carbone, A., Montalbano, A., Barraja, P., Dana, P., & Cirrincione, G. (2017). An overview on the recent developments of 1,2,4 triazine derivatives as anticancer compounds. European Journal of Medicinal Chemistry, 142, 328–375.

    Article  CAS  PubMed  Google Scholar 

  45. Verma, T., Sinha, M., & Bansai, N. (2020). Heterocyclic compounds bearing triazine scaffold and their biological significance: A review. Anti-Cancer Agents in Medicinal Chemistry, 20, 4–28.

    Article  CAS  PubMed  Google Scholar 

  46. Diffey, B. L., & Farr, P. M. (1991). Sunscreen protection against UVB, UVA and blue light: An in vivo and in vitro comparison. British Journal of Dermatology, 124, 258–263.

    Article  CAS  Google Scholar 

  47. International Organization for Standardization. (2012). ISO 24443: 2012. Determination of sunscreen UVA photoprotection in vitro. International Organization for Standardization.

  48. Duteil, L., Cardot-Leccia, N., Queille-Roussel, C., Maubert, Y., Harmelin, Y., Boukari, F., Ambrosetti, D., Lacour, J. P., & Passeron, T. (2014). Differences in visible light-induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure. Pigment Cell & Melanoma Research, 27(5), 822–826.

    Article  CAS  Google Scholar 

  49. Bacqueville, D., & Mavon, A. (2008). Caspase-3 activation and DNA damage in pig skin organ culture after solar irradiation. Photochemistry and Photobiology, 84, 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  50. Guiraud, B., Hernandez-Pigeon, H., Ceruti, I., Mas, S., Palvadeau, Y., Saint-Martory, C., Castex-Rizzi, N., Duplan, H., & Bessou-Touya, S. (2014). Characterisation of a human epidermis model reconstructed from hair follicle keratinocytes and comparison with two commercially models and native skin. International Journal of Cosmetic Science, 36, 485–493.

    Article  CAS  PubMed  Google Scholar 

  51. Bacqueville, D., Jacques, C., Duprat, L., Jamin, E. L., Guiraud, B., Perdu, E., Bessou-Touya, S., Zalko, D., & Duplan, H. (2017). Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles. Toxicology and Applied Pharmacology, 329, 190–201.

    Article  CAS  PubMed  Google Scholar 

  52. Bacqueville, D., Douki, T., Duprat, L., Rebelo-Moreira, S., Guiraud, B., Dromigny, H., Perier, V., Bessou-Touya, S., & Duplan, H. (2015). A new hair follicle-derived human epidermal model for the evaluation of sunscreen genoprotection. Journal of Photochemistry and Photobiology B: Biology, 151, 31–38.

    Article  CAS  Google Scholar 

  53. Douki, T., von Koschembahr, A., & Cadet, J. (2017). Insight in DNA repair of UV-induced pyrimidine dimers by chromatographic methods. Photochemistry and Photobiology, 93, 207–215.

    Article  CAS  PubMed  Google Scholar 

  54. Terrani, I., Bircher, A. J., & Scherer Hofmeier, K. (2016). Solar urticaria induced by visible light: Successful treatment with omalizumab. Clinical and Experimental Dermatology, 41, 890–892.

    Article  CAS  PubMed  Google Scholar 

  55. Bolognia, J., Jorizzo, J. L., & Schaffer, J. V. (2012). Dermatology. Elsevier Saunders.

    Google Scholar 

  56. Martini, A. P. M., & Campos, P. M. B. G. M. (2018). Influence of visible light on cutaneous hyperchromias: Clinical efficacy of broad-spectrum sunscreens. Photodermatology, Photoimmunology & Photomedicine, 34, 241–248.

    Article  Google Scholar 

  57. Castanedo-Cazares, J. P., Hernandez-Blanco, D., Carlos-Ortega, B., Fuentes-Ahumada, C., & Torres-Álvarez, B. (2014). Near visible light and UV photoprotection in the treatment of melasma: A double-blind randomized trial. Photodermatology, Photoimmunology & Photomedicine, 30, 35–42.

    Article  CAS  Google Scholar 

  58. Barolet, D., Christiaens, F., & Hamblin, M. R. (2016). Infrared and skin: Friend or foe. Journal of Photochemistry and Photobiology B: Biology, 155, 78–85.

    Article  CAS  Google Scholar 

  59. Chamayou-Robert, C., DiGiorgio, C., Brack, O., & Doucet, O. (2021). Blue light induces DNA damage in normal human skin keratinocytes. Photodermatology, Photoimmunology & Photomedicine, 00, 1–7.

    Google Scholar 

  60. Kielbassa, C., Roza, L., & Epe, B. (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis, 18, 811–816.

    Article  CAS  PubMed  Google Scholar 

  61. Kielbassa, C., & Epe, B. (2000). DNA damage induced by ultraviolet and visible light and its wavelength dependence. Methods in Enzymology, 319, 436–445.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the following colleagues for their help in experiments: L. Duprat, A. Tourette, Frédéric Crépel, V. Périer and L. Cattuzzato from Pierre Fabre Dermo-Cosmétique. We also thank V. Georgescu, A. Couttet, S. Saint André and C. Jean-Decoster from Avène laboratories, but also Alain Moga and Nicolas Almaric from Synelvia for performing blue light evaluation.

Funding

The reported studies were funded by Pierre Fabre Dermo-Cosmétique, France and Laboratoires Dermatologiques Avène.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bacqueville.

Ethics declarations

Conflict of interest

All authors except T. Douki are employees of Pierre Fabre group, France. The authors report no other conflicts of interest associated with this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacqueville, D., Jacques-Jamin, C., Dromigny, H. et al. Phenylene Bis-Diphenyltriazine (TriAsorB), a new sunfilter protecting the skin against both UVB + UVA and blue light radiations. Photochem Photobiol Sci 20, 1475–1486 (2021). https://doi.org/10.1007/s43630-021-00114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00114-x

Keywords

Navigation