Skip to main content

Advertisement

Log in

Photodynamic inactivation of planktonic Staphylococcus aureus by sodium magnesium chlorophyllin and its effect on the storage quality of lettuce

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic inactivation (PDI) is a fast and effective non-heat sterilization technology. This study established an efficient blue light-emitting diode (LED) PDI with the photosensitizer sodium magnesium chlorophyllin (SMC) to eradicate Staphylococcus aureus in food. The antibacterial mechanisms were determined by evaluating DNA integrity, protein changes, morphological alteration, and the potency of PDI to eradicate S. aureus on lettuce was evaluated. Results showed that planktonic S. aureus could not be clearly observed on the medium after treatment with 5.0 μmol/L SMC for 10 min (1.14 J/cm2). Bacterial cell DNA and protein were susceptible to SMC-mediated PDI, and cell membranes were found to be disrupted. Moreover, SMC-mediated PDI effectively reduced 8.31 log CFU/mL of S. aureus on lettuce under 6.84 J/cm2 radiant exposure (30 min) with 100 μmol/L SMC, and PDI displayed a potent ability to restrain the weight loss as well as retard the changes of color difference of the lettuce during 7 day storage. The study will enrich our understanding of the inactivation of S. aureus by PDI, allowing for the development of improved strategies to eliminate bacteria in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, C. Y., Shi, C., Li, M. Z., Wang, M. Y., Ma, C. P., & Wang, Z. H. (2019). Rapid and simple detection of viable foodborne pathogen Staphylococcus aureus. Frontiers in Chemistry, 7, 7.

    CAS  Google Scholar 

  2. W. H. Organization (2015) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015.

  3. Grundmann, H., Aires-De-Sousa, M., Boyce, J., & Tiemersma, E. (2006). Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. The Lancet, 368(9538), 874–885.

    Article  Google Scholar 

  4. Morikawa, K., Maruyama, A., Inose, Y., Higashide, M., Hayashi, H., & Ohta, T. (2001). Overexpression of sigma factor, sigma(B), urges Staphylococcus aureus to thicken the cell wall and to resist beta-lactams. Biochemical and Biophysical Research Communications, 288(2), 385–389.

    Article  CAS  PubMed  Google Scholar 

  5. Wei, S., Park, B.-J., Seo, K.-H., & Oh, D.-H. (2016). Highly efficient and specific separation of Staphylococcus aureus from lettuce and milk using Dynabeads protein G conjugates. Food Science and Biotechnology, 25(5), 1501–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, B. W., Huang, J. M., Li, H. H., Zeng, Q. H., Wang, J. J., Liu, H. Q., Pan, Y. J., & Zhao, Y. (2020). Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control, 113, 10.

    Article  Google Scholar 

  7. Basaran, P. (2011). Inhibition effect of belzalkonium chloride treatment on growth of common food contaminating fungal species. Journal of Food Science and Technology, 48(4), 515–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C. G., Irfan, S., Krishnan, P., Kumar, A. V., Maharjan, S., Mushtaq, S., Noorie, T., Paterson, D. L., Pearson, A., Perry, C., Pike, R., … Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh, N., Singh, R. K., Bhunia, A. K., & Stroshine, R. L. (2002). Effect of inoculation and washing methods on the efficacy of different sanitizers against Escherichia coli O157: H7 on lettuce. Food Microbiology, 19(2–3), 183–193.

    Article  Google Scholar 

  10. Zudyte, B., & Luksiene, Z. (2019). Toward better microbial safety of wheat sprouts: chlorophyllin-based photosensitization of seeds. Photochemical & Photobiological Sciences, 18(10), 2521–2530.

    Article  CAS  Google Scholar 

  11. Glueck, M., Schamberger, B., Eckl, P., & Plaetzer, K. (2017). New horizons in microbiological food safety: photodynamic decontamination based on a curcumin derivative. Photochemical & Photobiological Sciences, 16(12), 1784–1791.

    Article  CAS  Google Scholar 

  12. Al-Shammery, D., Michelogiannakis, D., Ahmed, Z. U., Ahmed, H. B., Rossouw, P. E., Romanos, G. E., & Javed, F. (2019). Scope of antimicrobial photodynamic therapy in orthodontics and related research: a review. Photodiagnosis and Photodynamic Therapy, 25, 456–459.

    Article  PubMed  Google Scholar 

  13. Ran, T., Fang, Z., Qing-Juan, T., Chuan-Shan, X., Zhi-Jing, N., & Xiang-Hong, M. (2019). Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chemistry, 274, 415–421.

    Article  Google Scholar 

  14. Liu, F., Li, Z. J., Cao, B. B., Wu, J., Wang, Y. M., Xue, Y., Xu, J., Xue, C. H., & Tang, Q. J. (2016). The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Research International, 87, 204–210.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, B., Huang, J., Liu, Y., Liu, H., Zhao, Y., & Wang, J. J. (2021). Effects of the curcumin-mediated photodynamic inactivation on the quality of cooked oysters with Vibrio parahaemolyticus during storage at different temperature. International Journal of Food Microbiology, 345, 109152–109152.

    Article  CAS  PubMed  Google Scholar 

  16. Paskeviciute, E., Zudyte, B., & Luksiene, Z. (2019). Innovative nonthermal technologies: chlorophyllin and visible light significantly reduce microbial load on basil. Food Technology and Biotechnology, 57(1), 126–132.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lijun, T., Huihui, L., Bowen, C., Jiaming, H., Yufeng, L., Huaming, Z., Haiquan, L., Yong, Z., & Jing, W. J. (2021). Dual-species biofilms formation of Vibrio parahaemolyticus and Shewanella putrefaciens and their tolerance to photodynamic inactivation. Food Control, 125, 107983.

    Article  Google Scholar 

  18. Carter, O., Bailey, G. S., & Dashwood, R. H. (2004). The dietary phytochemical chlorophyllin alters e-cadherin and beta-catenin expression in human colon cancer cells. Journal of Nutrition, 134(12), 3441S-3444S.

    Article  CAS  Google Scholar 

  19. Wang, J., Liu, L. J., Liu, B., Guo, Y., Zhang, Y. Y., Xu, R., Wang, S. X., & Zhang, X. D. (2010). Spectroscopic study on interaction of bovine serum albumin with sodium magnesium chlorophyllin and its sonodynamic damage under ultrasonic irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 366–374.

    Article  Google Scholar 

  20. Hasenleitner, M., & Plaetzer, K. (2020). In the right light: photodynamic inactivation of microorganisms using a LED-based illumination device tailored for the antimicrobial application. Antibiotics-Basel, 9(1), 13.

    Article  CAS  Google Scholar 

  21. Xi, D., Shuze, T., Qian, W., Juan, T., Riley, W. W., & Zhenqiang, C. (2016). Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue. Journal of the Science of Food and Agriculture, 96(5), 1601–1608.

    Article  Google Scholar 

  22. Kim, M. J., & Yuk, H. G. (2017). Antibacterial mechanism of 405-nanometer light-emitting diode against salmonella at refrigeration temperature. Applied and Environmental Microbiology, 83(5), 14.

    Article  Google Scholar 

  23. Hu, J. M., Lin, S. L., Tan, B. K., Hamzah, S. S., Lin, Y., Kong, Z. H., Zhang, Y., Zheng, B. D., & Zeng, S. X. (2018). Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Research International, 111, 265–271.

    Article  CAS  PubMed  Google Scholar 

  24. Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26(1), 31–43.

    Article  CAS  PubMed  Google Scholar 

  25. Huang, J. M., Chen, B. W., Li, H. H., Zeng, Q. H., Wang, J. J., Liu, H. Q., Pan, Y. J., & Zhao, Y. (2020). Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes. Food Control, 108, 8.

    Article  Google Scholar 

  26. Lippman, B., Yao, S. Y., Huang, R. Z., & Chen, H. Q. (2020). Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. International Journal of Food Microbiology, 323, 9.

    Article  Google Scholar 

  27. Berney, M., Weilenmann, H.-U., & Egli, T. (2006). Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology, 152, 1719–1729.

    Article  CAS  PubMed  Google Scholar 

  28. Dai, T., Huang, Y. Y., & Hamblin, M. R. (2009). Photodynamic therapy for localized infections-State of the art. Photodiagnosis and Photodynamic Therapy, 6(3–4), 170–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, T., Zhao, Y., Matthews, K., Gao, J., Hao, J., Wang, S., Han, J., & Jia, Y. (2020). Antibacterial activity against Staphylococcus aureus of curcumin-loaded chitosan spray coupled with photodynamic treatment. LWT-Food Science and Technology, 134, 110073.

    Article  CAS  Google Scholar 

  30. Ghate, V. S., Ng, K. S., Zhou, W., Yang, H., Khoo, G. H., Yoon, W.-B., & Yuk, H.-G. (2013). Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures. International Journal of Food Microbiology, 166(3), 399–406.

    Article  PubMed  Google Scholar 

  31. Vinayak, S. G., Weibiao, Z., & Hyun-Gyun, Y. (2019). Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, 18(2), 402–424.

    Article  Google Scholar 

  32. Song, L., Farrah, S. R., & Baney, R. H. (2011). Bacterial inactivation kinetics of dialdehyde starch aqueous suspension. Polymers, 3(4), 1902–1910.

    Article  CAS  Google Scholar 

  33. Kumar, A., Ghate, V., Kim, M. J., Zhou, W. B., Khoo, G. H., & Yuk, H. G. (2017). Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination. Food Microbiology, 63, 12–21.

    Article  CAS  PubMed  Google Scholar 

  34. Vinayak, G., Ai Ling, L., Amit, K., Woo Suk, B., Weibiao, Z., & Hyun-Gyun, Y. (2015). Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiology, 48, 49–57.

    Article  Google Scholar 

  35. Kim, M. J., Ng, B. X. A., Zwe, Y. H., & Yuk, H. G. (2017). Photodynamic inactivation of Salmonella enterica Enteritidis by 405 +/- 5-nm light-emitting diode and its application to control salmonellosis on cooked chicken. Food Control, 82, 305–315.

    Article  CAS  Google Scholar 

  36. Hu, X. Q., Huang, Y. Y., Wang, Y. G., Wang, X. Y., & Hamblin, M. R. (2018). Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Frontiers in Microbiology, 9, 24.

    Article  Google Scholar 

  37. Bertoloni, G., Lauro, F. M., Cortella, G., & Merchat, M. (2000). Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1475(2), 169–174.

    Article  CAS  Google Scholar 

  38. Deng, X., Tang, S., Wu, Q., Tian, J., Riley, W. W., & Chen, Z. (2016). Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue. Journal of the Science of Food and Agriculture, 96(5), 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  39. Penha, C. B., Bonin, E., Silva, AFd., Hioka, N., Zanqueta, E. B., Nakamura, T. U., Filho, BAd. A., Campanerut-Sa, P. A. Z., & Mikcha, J. M. G. (2017). Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT-Food Science and Technology, 76(Part B), 198–202.

    Article  CAS  Google Scholar 

  40. Ghate, V. S., Zhou, W. B., & Yuk, H. G. (2019). Perspectives and trends in the application of photodynamic inactivation for microbiological food safety. Comprehensive Reviews in Food Science and Food Safety, 18(2), 402–424.

    Article  PubMed  Google Scholar 

  41. Lin, Y. L., Hu, J. M., Li, S. Y., Hamzah, S. S., Jiang, H. Q., Zhou, A. R., Zeng, S. X., & Lin, S. L. (2019). Curcumin-based photodynamic sterilization for preservation of fresh-cut Hami melon. Molecules, 24(13), 10.

    Article  Google Scholar 

  42. Jahid, I. K., Han, N. R., Srey, S., & Ha, S.-D. (2014). Competitive interactions inside mixed-culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce enhance microbial resistance of their sessile cells to ultraviolet C (UV-C) irradiation. Food Research International, 55, 445–454.

    Article  CAS  Google Scholar 

  43. Ukuku, D. O., & Fett, W. F. (2002). Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. Journal of Food Protection, 65(7), 1093–1099.

    Article  PubMed  Google Scholar 

  44. Monier, J. M., & Lindow, S. E. (2005). Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microbial Ecology, 49(3), 343–352.

    Article  PubMed  Google Scholar 

  45. Tortik, N., Spaeth, A., & Plaetzer, K. (2014). Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin. Photochemical & Photobiological Sciences, 13(10), 1402–1409.

    Article  CAS  Google Scholar 

  46. Pace, B., Capotorto, I., Palumbo, M., Pelosi, S., & Cefola, M. (2020). Combined effect of dipping in oxalic or in citric acid and low O(2)modified atmosphere, to preserve the quality of fresh-cut lettuce during storage. Foods, 9(8), 988.

    Article  CAS  PubMed Central  Google Scholar 

  47. Wills, R. B. H., Pristijono, P., & Golding, J. B. (2008). Browning on the surface of cut lettuce slices inhibited by short term exposure to nitric oxide (NO). Food Chemistry, 107(4), 1387–1392.

    Article  CAS  Google Scholar 

  48. Perombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51(1), 1–12.

    Article  Google Scholar 

  49. Tao, T., Ding, C., Han, N., Cui, Y., Zhang, C. J. F. P., & Life, S. (2019). Evaluation of pulsed light for inactivation of foodborne pathogens on fresh-cut lettuce: Effects on quality attributes during storage. Food Packaging and Shelf Life, 21, 100358.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2018YFC1602205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Wang or Jie Ou.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Tan, L., Li, H. et al. Photodynamic inactivation of planktonic Staphylococcus aureus by sodium magnesium chlorophyllin and its effect on the storage quality of lettuce. Photochem Photobiol Sci 20, 761–771 (2021). https://doi.org/10.1007/s43630-021-00057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00057-3

Keywords

Navigation