Skip to main content
Log in

Pressure distribution on rectangular tall buildings in boundary layer flows

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The paper discusses wind tunnel measurements performed on vertically placed rectangular prisms representing medium- and high-rise buildings. The results concern mean wind velocity pressure coefficient. The influences of the angle of wind attack, boundary layer and dimensions of models are considered. Two rectangular models of side ratio D/B = 2 (0.5) and two models of side ratio D/B = 4 (0.25) and different aspect ratios are investigated. Four cases of boundary layer flows are simulated. The prisms are examined at a full range of wind angles that change every 15°. Spatial distributions of the mean wind velocity pressure are similar between models and boundary layers at all angles of wind attack but differ significantly in values, especially on windward and side walls. The boundary layer characteristics have slightly stronger influence on the mean pressure coefficient on windward walls than the change in side ratio and dimensions of models. From the other hand, the change in model geometry influences suction a little stronger on leeward and side walls than the change of boundary layer. The wind action on windward wide wall causes greater differences of pressure on this wall and smaller differences of suction on side and leeward walls than the wind action on windward narrow wall. The oblique angles of wind attack cause greater suction at top parts of the models near the roof due to forming conical vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Baines WD, Effects of velocity distribution on wind loads and flow patterns on buildings, in: 1st Conf. Wind Eff. Build. Struct., National Physical Laboratory, Teddington, England, 1965: pp. 197–224.

  2. Jensen M, Franck N, Model-scale tests in turbulent wind. Part 2. Phenomena dependent on the velocity pressure. Wind loads on buildings., The Danish Technical Press, Copenhagen, 1965.

  3. Kareem A, Cermak JE. Pressure fluctuations on a square building model in boundary layer flows. J Wind Eng Ind Aerodyn. 1984;16:17–41. https://doi.org/10.1016/0167-6105(84)90047-3.

    Article  Google Scholar 

  4. Surry D, Djakovich D. Fluctuating pressures on models of tall buildings. J Wind Eng Ind Aerodyn. 1995;58:81–112. https://doi.org/10.1016/0167-6105(95)00015-J.

    Article  Google Scholar 

  5. Sitheeq MM, Iyengar AKS, Farell C. Effect of turbulence and its scales on the pressure field on the surface of a three-dimensional square prism. J Wind Eng Ind Aerodyn. 1997;69–71:461–71. https://doi.org/10.1016/S0167-6105(97)00177-3.

    Article  Google Scholar 

  6. Kim Y, Kanda J. Characteristics of aerodynamic forces and pressures on square plan buildings with height variations. J Wind Eng Ind Aerodyn. 2010;98:449–65. https://doi.org/10.1016/j.jweia.2010.02.004.

    Article  Google Scholar 

  7. Kim YC, Kanda J. Wind pressures on tapered and set-back tall buildings. J Fluids Struct. 2013;39:306–21. https://doi.org/10.1016/j.jfluidstructs.2013.02.008.

    Article  Google Scholar 

  8. Wacker J. Towards reliability-based local design wind pressures for simple rectangularly-shaped buildings. J Wind Eng Ind Aerodyn. 1994;53:157–75. https://doi.org/10.1016/0167-6105(94)90024-8.

    Article  Google Scholar 

  9. Liang S, Liu S, Li QS, Zhang L, Gu M. Mathematical model of acrosswind dynamic loads on rectangular tall buildings. J Wind Eng Ind Aerodyn. 2002;90:1757–70. https://doi.org/10.1016/S0167-6105(02)00285-4.

    Article  Google Scholar 

  10. Liang S, Li QS, Liu S, Zhang L, Gu M. Torsional dynamic wind loads on rectangular tall buildings. Eng Struct. 2004;26:129–37. https://doi.org/10.1016/j.engstruct.2003.09.004.

    Article  ADS  Google Scholar 

  11. Lin N, Letchford C, Tamura Y, Liang B, Nakamura O. Characteristics of wind forces acting on tall buildings. J Wind Eng Ind Aerodyn. 2005;93:217–42. https://doi.org/10.1016/j.jweia.2004.12.001.

    Article  Google Scholar 

  12. Kareem A. Measurements of pressure and force fields on building models in simulated atmospheric flows. J Wind Eng Ind Aerodyn. 1990;36:589–99. https://doi.org/10.1016/0167-6105(90)90341-9.

    Article  ADS  Google Scholar 

  13. K. Butler, A. Kareem, Characteristics of pressure and integral loads on prisms in boundary layer flows. In: Proceedings of 12th International Conference on Wind Eng., 2007; pp. 487–494.

  14. Tamura Y, Kikuchi H, Hibi K. Peak normal stresses and effects of wind direction on wind load combinations for medium-rise buildings. J Wind Eng Ind Aerodyn. 2008;96:1053–7. https://doi.org/10.1016/j.jweia.2007.06.027.

    Article  Google Scholar 

  15. Cheng CM, Tsai MS, Along-wind design wind load for tall buildings (I): Results of wind tunnel tests, in: Proc. 5th Int. Adv. Sch. Wind Eng., The GCOE Program at Tokyo Polytechnic University, 2009; pp. 5–29.

  16. Zhang J, Gu M. Distribution of background equivalent static wind load on high-rise buildings. Front Archit Civ Eng Chin. 2009;3:241–8. https://doi.org/10.1007/s11709-009-0036-z.

    Article  Google Scholar 

  17. Bartoli G, Ricciardelli F. Characterisation of pressure fluctuations on the leeward and side faces of rectangular buildings and accuracy of the quasi-steady loads. J Wind Eng Ind Aerodyn. 2010;98:512–9. https://doi.org/10.1016/j.jweia.2010.04.001.

    Article  Google Scholar 

  18. Quan Y, Liang Y, Wang F, Gu M. Wind tunnel test study on the wind pressure coefficient of claddings of high-rise buildings. Front Archit Civ Eng Chin. 2011;5:518–24. https://doi.org/10.1007/s11709-011-0128-4.

    Article  Google Scholar 

  19. Amin JA, Ahuja AK. Effects of side ratio on wind-induced pressure distribution on rectangular buildings. J Struct. 2013;2013:1–12. https://doi.org/10.1155/2013/176739.

    Article  Google Scholar 

  20. Amin JA, Ahuja AK. Characteristics of wind forces and responses of rectangular tall buildings. Int J Adv Struct Eng. 2014;6:1–14. https://doi.org/10.1007/s40091-014-0066-1.

    Article  Google Scholar 

  21. Ganapathi CS, Harikrishna P, S.R. S, Effects of upstream terrain characteristics on aerodynamic coefficients of structures. Arch Civ Mech Eng 2017; 17:776–785. https://doi.org/10.1016/j.acme.2017.02.005.

  22. Lee BE. The effect of turbulence on the surface pressure field of a square prism. J Fluid Mech. 1975;62:263–82. https://doi.org/10.1017/S0022112075001437.

    Article  ADS  Google Scholar 

  23. A.R. Barriga, C.T. Crowe, J.A. Robertson, Pressure distribution of a square cylinder at a small angle of attack in a turbulent cross flow, in: Proc. 4th Int. Conf. Wind Eff. Build. Struct., London, UK, 1975: pp. 89–93.

  24. M. Miyazaki, T. Miyata, Effect of turbulence scale on aerodynamic response of rectangular cylinders, in: 5th Symp. Wind Eff. Struct., 1978.

  25. S. Yawei, The effects of turbulence on the aerodynamic properties pf two-dimensional rectangular cylinders, in: Recent Advences Wind Eng. Proc. 2nd Asia-Pacific Symp. Wind Eng., Beijing, China, 1989: pp. 340–347.

  26. Q.S. Li, W.H. Melbourne, Effects of turbulence on surface pressures of the flat plate and rectangular cylinders in separated and reattaching flows, in: 9th Interntational Conf. Wind Eng., New Delhi, India, 1995: pp. 165–176.

  27. Yu D, Kareem A. Two-dimensional simulation of flow around rectangular prisms. J Wind Eng Ind Aerodyn. 1996;62:131–61. https://doi.org/10.1016/S0167-6105(96)00076-1.

    Article  Google Scholar 

  28. Yu D, Kareem A. Parametric study of flow around rectangular prisms using LES. J Wind Eng Ind Aerodyn. 1998;77:653–62. https://doi.org/10.1016/S0167-6105(98)00180-9.

    Article  Google Scholar 

  29. Lu PC, Cheng CM, The development of separated shear layers of rectangular prisms in turbulent flows. In: A. Larsen, G. Larose, F. Livesey (Eds.), Wind Eng. into 21st Century, Balkema, Rotterdam, 1999; pp. 1693–1698.

  30. Shimada K, Ishihara T. Application of a modified k-e model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders. J Fluids Struct. 2002;16:465–85. https://doi.org/10.1006/jfls.2001.0433.

    Article  Google Scholar 

  31. Tamura T, Ono Y. LES analysis on aeroelastic instability of prisms in turbulent flow. J Wind Eng Ind Aerodyn. 2003;91:1827–46. https://doi.org/10.1016/j.jweia.2003.09.032.

    Article  Google Scholar 

  32. Noda H, Nakayama A. Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section. Exp Fluids. 2003;34:332–44. https://doi.org/10.1007/s00348-002-0562-0.

    Article  Google Scholar 

  33. Chen JH, Chen DH, The surface pressures of 2–D rectangular cylinder with small angle of oncoming flow. In: J. Naprstek, C. Fischer (Eds.), Proc. 4th Eur. Conf. Wind Eng., Praque, Czech Republic, 2005.

  34. Melbourne WH. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. J Wind Eng Ind Aerodyn. 1980;6:73–88. https://doi.org/10.1016/0167-6105(80)90023-9.

    Article  Google Scholar 

  35. Tanaka H, Lawen N. Test on the CAARC standard tall building model with a length scale 1:1000. J Wind Eng Ind Aerodyn. 1986;26:15–29. https://doi.org/10.1016/0167-6105(86)90102-9.

    Article  Google Scholar 

  36. Goliger AM, Milford RV. Sensitivity of the CAARC standard building model to geometric scale and turbulence. J Wind Eng Ind Aerodyn. 1988;31:105–23. https://doi.org/10.1016/0167-6105(88)90190-0.

    Article  Google Scholar 

  37. Huang S, Li QS, Xu S. Numerical evaluation of wind effects on a tall steel building by CFD. J Constr Steel Res. 2007;63:612–27. https://doi.org/10.1016/j.jcsr.2006.06.033.

    Article  Google Scholar 

  38. Huang MF, Lau IWH, Chan CM, Kwok KCS, Li G. A hybrid RANS and kinematic simulation of wind load effects on full-scale tall buildings. J Wind Eng Ind Aerodyn. 2011;99:1126–38. https://doi.org/10.1016/j.jweia.2011.09.003.

    Article  Google Scholar 

  39. Daniels SJ, Castro IP, Xie ZT. Peak loading and surface pressure fluctuations of a tall model building. J Wind Eng Ind Aerodyn. 2013;120:19–28. https://doi.org/10.1016/j.jweia.2013.06.014.

    Article  Google Scholar 

  40. Meng FQ, He BJ, Zhu J, Zhao DX, Darko A, Zhao ZQ. Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng. 2018;16:146–58. https://doi.org/10.1016/j.jobe.2018.01.004.

    Article  Google Scholar 

  41. Thordal MS, Bennetsen JC, Koss HHH. Review for practical application of CFD for the determination of wind load on high-rise buildings. J Wind Eng Ind Aerodyn. 2019;186:155–68. https://doi.org/10.1016/j.jweia.2018.12.019.

    Article  Google Scholar 

  42. Li Y, Li C, Li QS, Song Q, Huang X, Li YG. Aerodynamic performance of CAARC standard tall building model by various corner chamfers. J Wind Eng Ind Aerodyn. 2020;202: 104197. https://doi.org/10.1016/j.jweia.2020.104197.

    Article  Google Scholar 

  43. Kikuchi H, Tamura Y, Ueda H, Hibi K. Dynamic wind pressures acting on a tall building model – proper orthogonal decomposition. J Wind Eng Ind Aerodyn. 1997;69–71:631–46. https://doi.org/10.1016/S0167-6105(97)00193-1.

    Article  Google Scholar 

  44. Maruta E, Kanda M, Sato J. Effects on surface roughness for wind pressure on glass and cladding of buildings. J Wind Eng Ind Aerodyn. 1998;74–76:651–63. https://doi.org/10.1016/S0167-6105(98)00059-2.

    Article  Google Scholar 

  45. Tamura T, Nozawa K, Kondo K. AIJ guide for numerical prediction of wind loads on buildings. J Wind Eng Ind Aerodyn. 2008;96:1974–84. https://doi.org/10.1016/j.jweia.2008.02.020.

    Article  Google Scholar 

  46. Butler K, Cao S, Kareem A, Tamura Y, Ozono S. Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field. J Wind Eng Ind Aerodyn. 2010;98:299–316. https://doi.org/10.1016/j.jweia.2009.11.003.

    Article  Google Scholar 

  47. Tanaka H, Tamura Y, Ohtake K, Nakai M, Kim YC. Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations. J Wind Eng Ind Aerodyn. 2012;107–108:179–91. https://doi.org/10.1016/j.jweia.2012.04.014.

    Article  Google Scholar 

  48. Maruyama Y, Tamura T, Okuda Y, Ohashi M. LES of fluctuating wind pressure on a 3D square cylinder for PIV-based inflow turbulence. J Wind Eng Ind Aerodyn. 2013;122:130–7. https://doi.org/10.1016/j.jweia.2013.07.001.

    Article  Google Scholar 

  49. Montazeri H, Blocken B. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: Validation and sensitivity analysis. Build Environ. 2013;60:137–49. https://doi.org/10.1016/j.buildenv.2012.11.012.

    Article  Google Scholar 

  50. Ricci M, Patruno L, Kalkman I, de Miranda S, Blocken B. Towards LES as a design tool: Wind loads assessment on a high-rise building. J Wind Eng Ind Aerodyn. 2018;180:1–18. https://doi.org/10.1016/j.jweia.2018.07.009.

    Article  Google Scholar 

  51. Sheng R, Perret L, Calmet I, Demouge F, Guilhot J. Wind tunnel study of wind effects on a high-rise building at a scale of 1:300. J Wind Eng Ind Aerodyn. 2018;174:391–403. https://doi.org/10.1016/j.jweia.2018.01.017.

    Article  Google Scholar 

  52. Li Y, Tian X, Tee KF, Li QS, Li YG. Aerodynamic treatments for reduction of wind loads on high-rise buildings. J Wind Eng Ind Aerodyn. 2018;172:107–15. https://doi.org/10.1016/j.jweia.2017.11.006.

    Article  Google Scholar 

  53. Liu Y, Kopp GA, Chen S. Effects of plan dimensions on gust wind loads for high-rise buildings. J Wind Eng Ind Aerodyn. 2019;194: 103980. https://doi.org/10.1016/j.jweia.2019.103980.

    Article  Google Scholar 

  54. Hui Y, Yuan K, Chen Z, Yang Q. Characteristics of aerodynamic forces on high-rise buildings with various façade appurtenances. J Wind Eng Ind Aerodyn. 2019;191:76–90. https://doi.org/10.1016/j.jweia.2019.06.002.

    Article  Google Scholar 

  55. Chen Z, Tse KT, Kwok KCS. Unsteady pressure measurements on an oscillating slender prism using a forced vibration technique. J Wind Eng Ind Aerodyn. 2017;170:81–93. https://doi.org/10.1016/j.jweia.2017.08.004.

    Article  Google Scholar 

  56. Zeng J, Li M, Li S, Ma R. Spatial distribution of gusty loads on a rectangular prism in boundary layer flows. KSCE J Civ Eng. 2018;22:3052–65. https://doi.org/10.1007/s12205-017-0465-5.

    Article  Google Scholar 

  57. Flaga A, Kłaput R, Augustyn M. Wind tunnel tests of two free-standing lighting protection masts in different arrangements with surroundings roof objects and roof conditions. Eng Struct. 2016;124:539–48. https://doi.org/10.1016/j.engstruct.2016.06.040.

    Article  Google Scholar 

  58. Kocoń A, Flaga A. Critical velocity measurements of freight railway vehicles roll-over in wind tunnel tests as the method to assess their safety at strong cross winds. J Wind Eng Ind Aerodyn. 2021. https://doi.org/10.1016/j.jweia.2021.104559.

    Article  Google Scholar 

  59. Bęc J, Lipecki T, Błazik-Borowa E. Research on wind structure in the wind tunnel of Wind Engineering Laboratory of Cracow University of Technology. J Phys Conf Ser. 2011;318: 072003. https://doi.org/10.1088/1742-6596/318/7/072003.

    Article  Google Scholar 

  60. Lipecki T, Błazik-Borowa E, Bęc J, Wind structure influence on surface pressures of rectangular cylinders at various angles of wind attack, in: 13th Int. Conf. Wind Eng., Multi-Science Publishing Co Ltd, Amsterdam, Netherlands, 2011; p. CD, #272.

  61. Lipecki T, Bęc J, Błazik-Borowa E, The response of aeroelastic models of circular cross-sections to wind action. In: H. Xiang, Y. Ge, S. Cao (Eds.), 7th Int. Colloq. Bluff Bodies Aerodyn. Appl., China Communications Audio-Visual & Electronic Press, Shanghai, China, 2012: pp. 573–582.

  62. Holmes JD. Wind loading of structures. New York: CRC Press; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Lipecki.

Ethics declarations

Conflict of interest

Author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipecki, T. Pressure distribution on rectangular tall buildings in boundary layer flows. Archiv.Civ.Mech.Eng 22, 83 (2022). https://doi.org/10.1007/s43452-022-00398-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00398-5

Keywords

Navigation