Skip to main content
Log in

Modeling of ground vibrations from a tunnel in layered unsaturated soil with spatial variability

  • Review Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a method for modeling the ground vibrations from a railway tunnel in layered unsaturated soil, considering the uncertainty and spatial variability of soil parameters. A deterministic ground vibration prediction model, which is an improved Euler beam model, is developed to evaluate the vibrations for a tunnel in layered unsaturated soil. Furthermore, the spatial variability of soil parameters is simulated by random fields using the Monte Carlo theory and the middle point method of Cholesky decomposition. By coupling the random fields of soil parameters to the deterministic vibration prediction model, the effect of uncertainty and spatial variability of soil on the ground vibrations is demonstrated through a case study. It is found that the variability of soil parameters has little influence on the spatial distribution regularities of ground vibrations, but it has a significant effect on the dynamic response amplitude and the critical velocity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Balendra T, Koh CG, Ho YC. Dynamic response of buildings due to trains in underground tunnels. Earthq Eng Struct Dynam. 1991;20(3):275–91. https://doi.org/10.1002/eqe.4290200306.

    Article  Google Scholar 

  2. Sheng XZ. A review on modelling ground vibrations generated by underground trains. Int J Rail Transp. 2019;7(4):241–61. https://doi.org/10.1080/23248378.2019.1591312.

    Article  Google Scholar 

  3. Di H, Zhou S, Yao X, Tian Z (2021) In situ grouting tests for differential settlement treatment of a cut-and-cover metro tunnel in soft soils. Bullet Eng Geol Environ 80(8):6415–6427. https://doi.org/10.1007/s10064-021-02276-5

    Article  Google Scholar 

  4. Phoon KK, Kulhawy FH. Characterization of geotechnical variability. Can Geotech J. 1999;36(4):612–24. https://doi.org/10.1139/cgj-36-4-612.

    Article  Google Scholar 

  5. Thiede R, Natke HG. The influence of thickness vibration of subway walls on the vibration emission generated by subway traffic. In: Soil Dynamics and Earthquake Engineering V First Int Conf Soil Dyn Earthquake. 1991; pp 672–682.

  6. He ZX, Zhai WM, Luo Z. Ground vibration caused by moving metro trains. J Southwest Jiaotong Univ. 2008;43(2):218-221+247. https://doi.org/10.3969/j.issn.0258-2724.2008.02.013.

    Article  Google Scholar 

  7. Xie WP, Sun HG. Fem analysis on wave propagation in soils induced by high speed train loads. Chin J Rock Mech Eng. 2003;22(7):1180–4. https://doi.org/10.3321/j.issn:1000-6915.2003.07.025.

    Article  Google Scholar 

  8. Bian XC, Jin WF, Jiang HG. Ground-borne vibrations due to dynamic loadings from moving trains in subway tunnels. J Zhejiang Univ-Sci A (Appl Phys Eng). 2012;13(11):870–6. https://doi.org/10.1631/jzus.A12ISGT5.

    Article  Google Scholar 

  9. Degrande G, Clouteau D, Othman R, Arnst M, Chebli H, Klein R, Chatterjee P, Janssens B. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation. J Sound Vib. 2006;293(35):645–66. https://doi.org/10.1016/j.jsv.2005.12.023.

    Article  ADS  Google Scholar 

  10. Liu WF, Liu WN, Gupta S, Degrande G. A coupled periodic finite element-boundary element model for prediction of vibrations induced by metro traffic. J Vib Eng. 2009;22(5):480–5. https://doi.org/10.3969/j.issn.1004-4523.2009.05.007.

    Article  Google Scholar 

  11. Sheng X, Jones CJC, Thompson DJ. Modelling ground vibration from railways using wavenumber finite and boundary-element methods. Math Phys Eng Sci. 2005;461:2043–70. https://doi.org/10.1098/rspa.2005.1450.

    Article  MathSciNet  Google Scholar 

  12. He C, Zhou SH, Di HG, Shan Y. A 2.5-D coupled FE–BE model for the dynamic interaction between saturated soil and longitudinally invariant structures. Comput Geotech. 2017;82:211–22. https://doi.org/10.1016/j.compgeo.2016.10.005.

    Article  Google Scholar 

  13. Hung HH, Chen GH, Yang YB. Effect of railway roughness on soil vibrations due to moving trains by 2.5 D finite/infinite element approach. Eng Struct. 2013;57:254–66. https://doi.org/10.1016/j.engstruct.2013.09.031.

    Article  Google Scholar 

  14. Liu WN, Ma M, Liu WF, Sun XJ, Sun FQ. Overview on current research of environmental vibration influence induced by urban mass transit in China. Scientia Sinica: Technologica. 2016;46:547–59. https://doi.org/10.1360/N092015-00334.

    Article  ADS  Google Scholar 

  15. Kouroussis G, Vogiatzis KE, Connolly DP. A combined numerical/experimental prediction method for urban railway vibration. Soil Dyn Earthq Eng. 2017;97:377–86. https://doi.org/10.1016/j.soildyn.2017.03.030.

    Article  Google Scholar 

  16. Metrikine AV, Vrouwenvelder ACWM. Surface ground vibration due to a moving train in a tunnel: two-dimensional model. J Sound Vib. 2000;234(1):43–66. https://doi.org/10.1006/jsvi.1999.2853.

    Article  ADS  Google Scholar 

  17. Hu AF, Li YJ, Deng YB, Xie KH. Vibration of layered saturated ground with a tunnel subjected to an underground moving load. Comput Geotech. 2020;119:103342. https://doi.org/10.1016/j.compgeo.2019.103342.

    Article  Google Scholar 

  18. Forrest JA, Hunt HEM. A three-dimensional model for calculation of train-induced ground vibration. J Sound Vib. 2006;294(4/5):678–705. https://doi.org/10.1016/j.jsv.2005.12.032.

    Article  ADS  Google Scholar 

  19. Di HG, Zhou SH, He C, Zhang XH, Luo Z. Three-dimensional multilayer cylindrical tunnel model for calculating train-induced dynamic stress in saturated soils. Comput Geotech. 2016;80:333–45. https://doi.org/10.1016/j.compgeo.2016.08.005.

    Article  Google Scholar 

  20. Yuan ZH, Boström A, Cai YQ. Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space. J Sound Vib. 2017;387:177–93. https://doi.org/10.1016/j.jsv.2016.10.016.

    Article  ADS  Google Scholar 

  21. He C, Zhou SH, Guo PJ, Gong QM. Three-dimensional analytical model for the dynamic interaction of twin tunnels in a homogeneous half-space. Acta Mech. 2019;230:1159–79. https://doi.org/10.1007/s00707-018-2330-0.

    Article  MathSciNet  Google Scholar 

  22. Shu Y, Shan Y, Zhou SH, Yang XW. Influence on vehicle-track-subgrade system dynamic response induced by track stiffness variation. J Tongji Univ (Natl Sci). 2017;45(5):721–31. https://doi.org/10.1908/j.issn.0253-374x.2017.05.014.

    Article  Google Scholar 

  23. Chen FY, Zhang J, Zhang XL, Feng SJ. Prediction of vibration induced by high-speed train: consideration of soil spatial variability. Geo-Risk. 2017. https://doi.org/10.1061/9780784480717.041.

    Article  Google Scholar 

  24. Di HG, Zhou SH, Guo HJ, He C, Zhang XH. Three-dimensional analytical model for vibrations from a tunnel embedded in an unsaturated half-space. Acta Mech. 2021;02:1–20. https://doi.org/10.1007/s00707-020-02892-4.

    Article  MathSciNet  Google Scholar 

  25. Liu XW. Fundamentals of elastic wave field-theory. Qingdao: Ocean University of China Press; 2008.

    Google Scholar 

  26. Huang HW, Gong WP, Khoshnevisan S, Juang CH, Zhang DM, Wang L. Simplified procedure for finite element analysis of the longitudinal performance of shield tunnels considering spatial soil variability in longitudinal direction. Comput Geotech. 2015;64:132–45. https://doi.org/10.1016/j.compgeo.2014.11.010.

    Article  Google Scholar 

  27. Sert S, Luo Z, Xiao JH, Gong WP, Juan CH. Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Comput Geotech. 2016;75:182–91. https://doi.org/10.1016/j.compgeo.2016.02.004.

    Article  Google Scholar 

  28. Luo Z, Hu B, Wang YW, Di HG. Effect of spatial variability of soft clays on geotechnical design of braced excavations: a case study of Formosa excavation. Comput Geotech. 2018;103:242–53. https://doi.org/10.1016/j.compgeo.2018.07.020.

    Article  Google Scholar 

  29. Luo Z, Hu B. Probabilistic design model for energy piles considering soil spatial variability. Comput Geotech. 2019;108:308–18. https://doi.org/10.1016/j.compgeo.2019.01.003.

    Article  Google Scholar 

  30. Kasama K, Whittle AJ. Bearing capacity of spatially random cohesive soil using numerical limit analyses. J Geotech Geoenviron Eng. 2011;137(11):989–96. https://doi.org/10.1061/(ASCE)GT.19435606.0000531.

    Article  Google Scholar 

  31. Vanmarcke EH. Probabilistic modeling of soil profiles. J Geotech Eng Div ASCE. 1977;103(GT11):1227–46. https://doi.org/10.1016/0148-9062(78)90012-8.

    Article  Google Scholar 

  32. Fenton GA, Griffiths DV. Risk assessment in geotechnical engineering. New York: Wiley; 2008.

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China through Grant No. 51808405 and Natural Science Foundation of Shanghai 20ZR1459900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiji Guo.

Ethics declarations

Conflict of interest

The author(s) declare no potential conflicts of interest in terms of the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{gathered} \lambda_{c} = \lambda + c_{2} \gamma b_{11} + c_{2} (1 - \gamma )b_{21} \hfill \\ M = c_{2} \gamma b_{12} + c_{2} (1 - \gamma )b_{22} ,\quad N = c_{2} \gamma b_{13} + c_{2} (1 - \gamma )b_{23} \hfill \\ b_{11} = \frac{{c_{2} A_{22} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad b_{12} = \frac{1}{{n_{0} S_{r} }}a_{12} ,\quad b_{13} = \frac{1}{{n_{0} (1 - S_{r} )}}a_{13} \hfill \\ b_{21} = - \frac{{c_{2} A_{21} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad b_{22} = \frac{1}{{n_{0} S_{r} }}a_{22} ,\quad b_{23} = \frac{1}{{n_{0} (1 - S_{r} )}}a_{23} \hfill \\ \vartheta_{l} = \frac{{\rho_{l} }}{{n_{0} S_{r} }},\quad \vartheta_{g} = \frac{{\rho_{g} }}{{n_{0} (1 - S_{r} )}} \hfill \\ d_{l} = \frac{{\eta_{l} }}{{k_{rl} \kappa }},\quad d_{g} = \frac{{\eta_{g} }}{{k_{rg} \kappa }} \hfill \\ k_{rl} = \sqrt {S_{e} } [1 - (1 - S_{e}^{{\frac{1}{{\alpha_{2} }}}} )^{{\alpha_{2} }} ]^{2} ,\quad k_{rg} = \sqrt {1 - S_{e} } (1 - S_{e}^{{\frac{1}{{\alpha_{2} }}}} )^{{2\alpha_{2} }} \hfill \\ \end{gathered}$$
$$\begin{gathered} a_{11} = \frac{{c_{1} A_{22} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{12} = \frac{{A_{22} A_{13} - A_{12} A_{23} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{13} = \frac{{A_{22} A_{14} - A_{12} A_{24} }}{{A_{11} A_{22} - A_{12} A_{21} }} \hfill \\ a_{21} = - \frac{{c_{1} A_{21} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{22} = \frac{{A_{11} A_{23} - A_{21} A_{13} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{23} = \frac{{A_{11} A_{24} - A_{21} A_{14} }}{{A_{11} A_{22} - A_{12} A_{21} }} \hfill \\ A_{11} = \frac{{c_{2} \gamma - n_{0} S_{r} }}{{K_{s} }} + \frac{{n_{0} S_{r} }}{{K_{l} }},\quad A_{12} = \frac{{c_{2} (1 - \gamma ) - n_{0} (1 - S_{r} )}}{{K_{s} }} + \frac{{n_{0} (1 - S_{r} )}}{{K_{g} }} \hfill \\ A_{13} = n_{0} S_{r} ,\quad A_{14} = n_{0} (1 - S_{r} ),\quad A_{21} = A_{s} - \frac{{S_{r} (1 - S_{r} )}}{{K_{l} }} \hfill \\ A_{22} = \frac{{S_{r} (1 - S_{r} )}}{{K_{g} }} - A_{s} ,\quad A_{23} = - A_{24} = - S_{r} (1 - S_{r} ) \hfill \\ c_{1} = 1 - n_{0} - \frac{{K_{b} }}{{K_{s} }},\quad c_{2} = 1 - \frac{{K_{b} }}{{K_{s} }} \hfill \\ A_{s} = - \alpha_{1} \alpha_{2} \alpha_{3} (1 - S_{w0} )(S_{e} )^{{\frac{{\alpha_{2} + 1}}{{\alpha_{2} }}}} [(S_{e} )^{{ - \frac{1}{{\alpha_{2} }}}} - 1]^{{\frac{{\alpha_{3} - 1}}{{\alpha_{3} }}}} \hfill \\ S_{e} = \frac{{S_{r} - S_{w0} }}{{1 - S_{w0} }},\quad \lambda = \frac{2\upsilon \mu }{{1 - 2\upsilon }} \hfill \\ \mu = \mu_{s} + \frac{2050}{\alpha }In\left( {\sqrt {\frac{1}{{S_{e}^{2} }} - 1} + \frac{1}{{S_{e} }}} \right)\tan \varphi \hfill \\ \end{gathered}$$

Appendix B

$$\begin{gathered} D_{u}^{(i)} = \left[ {\begin{array}{*{20}c} {ik_{z} } & {ik_{z} } & {ik_{z} } & {ik_{sx}^{(i)} } \\ {ik_{p1x}^{(i)} } & {ik_{p2x}^{(i)} } & {ik_{p3x}^{(i)} } & { - ik_{z}^{(i)} } \\ {\mu_{l1}^{(i)} ik_{p1x}^{(i)} } & {\mu_{l2}^{(i)} ik_{p2x}^{(i)} } & {\mu_{l3}^{(i)} ik_{p3x}^{(i)} } & { - \mu_{ls}^{(i)} ik_{z} } \\ {\mu_{g1}^{(i)} ik_{p1x}^{(i)} } & {\mu_{g2}^{(i)} ik_{p2x}^{(i)} } & {\mu_{g3} ik_{p3x}^{(i)} } & { - \mu_{gs}^{(i)} ik_{z} } \\ \end{array} } \right] \hfill \\ D_{d}^{(i)} = \left[ {\begin{array}{*{20}c} {ik_{z} } & {ik_{z} } & {ik_{z} } & { - ik_{sx}^{(i)} } \\ { - ik_{p1x}^{(i)} } & { - ik_{p2x}^{(i)} } & { - ik_{p3x}^{(i)} } & { - ik_{z}^{(i)} } \\ { - \mu_{l1}^{(i)} ik_{p1x}^{(i)} } & { - \mu_{l2}^{(i)} ik_{p2x}^{(i)} } & { - \mu_{l3}^{(i)} ik_{p3x}^{(i)} } & { - \mu_{ls}^{(i)} ik_{z} } \\ { - \mu_{g1}^{(i)} ik_{p1x}^{(i)} } & { - \mu_{g2}^{(i)} ik_{p2x}^{(i)} } & { - \mu_{g3}^{(i)} ik_{p3x}^{(i)} } & { - \mu_{gs}^{(i)} ik_{z} } \\ \end{array} } \right] \hfill \\ \end{gathered}$$
$$\begin{gathered} S_{u}^{(i)} = \left[ {\begin{array}{*{20}c} { - \;2\mu^{(i)} k_{z} k_{p1x}^{(i)} } & { - \;2\mu^{(i)} k_{z} k_{p2x}^{(i)} } & { - \;2\mu^{(i)} k_{z} k_{p3x}^{(i)} } & { - \;\mu^{(i)} k_{sx}^{2(i)} + \mu^{(i)} k_{z}^{2} } \\ { - \;T_{1}^{(i)} } & { - \;T_{2}^{(i)} } & { - \;T_{3}^{(i)} } & {2\mu^{(i)} k_{z} k_{sx}^{(i)} } \\ {A_{p1}^{l(i)} k_{p1}^{2(i)} } & {A_{p2}^{l(i)} k_{p2}^{2(i)} } & {A_{p3}^{l(i)} k_{p3}^{2(i)} } & 0 \\ {A_{p1}^{g(i)} k_{p1}^{2(i)} } & {A_{p2}^{g(i)} k_{p2}^{2(i)} } & {A_{p3}^{g(i)} k_{p3}^{2(i)} } & 0 \\ \end{array} } \right] \hfill \\ S_{d}^{(i)} = \left[ {\begin{array}{*{20}c} {2\mu^{(i)} k_{z} k_{p1x}^{(i)} } & {2\mu^{(i)} k_{z} k_{p2x}^{(i)} } & {2\mu^{(i)} k_{z} k_{p3x}^{(i)} } & { - \;\mu^{(i)} k_{sx}^{2(i)} + \mu^{(i)} k_{z}^{2} } \\ { - \;T_{1}^{(i)} } & { - \;T_{2}^{(i)} } & { - \;T_{3}^{(i)} } & { - \;2\mu^{(i)} k_{z} k_{sx}^{(i)} } \\ {A_{p1}^{l(i)} k_{p1}^{2(i)} } & {A_{p2}^{l(i)} k_{p2}^{2(i)} } & {A_{p3}^{l(i)} k_{p3}^{2(i)} } & 0 \\ {A_{p1}^{g(i)} k_{p1}^{2(i)} } & {A_{p2}^{g(i)} k_{p2}^{2(i)} } & {A_{p3}^{g(i)} k_{p3}^{2(i)} } & 0 \\ \end{array} } \right] \hfill \\ \end{gathered}$$
$$\begin{gathered} E_{u}^{(i)} = \left[ {\begin{array}{*{20}c} {e^{{ixk_{p1x}^{(i)} }} } & 0 & 0 & 0 \\ 0 & {e^{{ixk_{p2x}^{(i)} }} } & 0 & 0 \\ 0 & 0 & {e^{{ixk_{p3x}^{(i)} }} } & 0 \\ 0 & 0 & 0 & {e^{{ixk_{sx}^{(i)} }} } \\ \end{array} } \right] \hfill \\ E_{d}^{(i)} = \left[ {\begin{array}{*{20}c} {e^{{ - ixk_{p1x}^{(i)} }} } & 0 & 0 & 0 \\ 0 & {e^{{ - ixk_{p2x}^{(i)} }} } & 0 & 0 \\ 0 & 0 & {e^{{ - ixk_{p3x}^{(i)} }} } & 0 \\ 0 & 0 & 0 & {e^{{ - ixk_{sx}^{(i)} }} } \\ \end{array} } \right] \hfill \\ A_{u}^{(i)} = \left[ {\begin{array}{*{20}c} {A_{u1}^{(i)} } & {A_{u2}^{(i)} } & {A_{u3}^{(i)} } & {A_{u4}^{(i)} } \\ \end{array} } \right]^{T} \hfill \\ A_{d}^{(i)} = \left[ {\begin{array}{*{20}c} {A_{d1}^{(i)} } & {A_{d2}^{(i)} } & {A_{d3}^{(i)} } & {A_{d4}^{(i)} } \\ \end{array} } \right]^{T} \hfill \\ \end{gathered}$$
$$\left\{ \begin{gathered} A_{p1}^{l} = (b_{11} + b_{12} \mu_{l1} + b_{13} \mu_{g1} )(k_{z}^{2} + k_{p1x}^{2} ) \hfill \\ A_{p2}^{l} = (b_{11} + b_{12} \mu_{l2} + b_{13} \mu_{g2} )(k_{z}^{2} + k_{p2x}^{2} ) \hfill \\ A_{p3}^{l} = (b_{11} + b_{12} \mu_{l3} + b_{13} \mu_{g3} )(k_{z}^{2} + k_{p3x}^{2} ) \hfill \\ A_{p1}^{g} = (b_{21} + b_{22} \mu_{l1} + b_{23} \mu_{g1} )(k_{z}^{2} + k_{p1x}^{2} ) \hfill \\ A_{p2}^{g} = (b_{21} + b_{22} \mu_{l2} + b_{23} \mu_{g2} )(k_{z}^{2} + k_{p2x}^{2} ) \hfill \\ A_{p3}^{g} = (b_{21} + b_{22} \mu_{l3} + b_{23} \mu_{g3} )(k_{z}^{2} + k_{p3x}^{2} ) \hfill \\ T_{1} = (\lambda + 2\mu )k_{p1x}^{2} + \lambda k_{z}^{2} + ak_{p1}^{2} (\gamma A_{p1}^{l} - \gamma A_{p1}^{g} + A_{p1}^{g} ) \hfill \\ T_{2} = (\lambda + 2\mu )k_{p2x}^{2} + \lambda k_{z}^{2} + ak_{p2}^{2} (\gamma A_{p2}^{l} - \gamma A_{p2}^{g} + A_{p2}^{g} ) \hfill \\ T_{3} = (\lambda + 2\mu )k_{p3x}^{2} + \lambda k_{z}^{2} + ak_{p3}^{2} (\gamma A_{p3}^{l} - \gamma A_{p3}^{g} + A_{p3}^{g} ) \hfill \\ \end{gathered} \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, H., Yu, J., Guo, H. et al. Modeling of ground vibrations from a tunnel in layered unsaturated soil with spatial variability. Archiv.Civ.Mech.Eng 22, 33 (2022). https://doi.org/10.1007/s43452-021-00358-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-021-00358-5

Keywords

Navigation