Skip to main content

Advertisement

Log in

The role of spinally located dopamine D2 receptors in the regulation of the blood glucose level in mice

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

The possible role of dopamine D2 receptors located in the spinal cord in the regulation of the blood glucose level have not been investigated before.

Methods

In the present study, the effect of D2 receptor agonist and antagonist administered intrathecal (it) injection on the blood glucose level were examined in the Institute of Cancer Research (ICR) mice.

Results

We found that it injection with carmoxirole (D2 receptor agonist) caused an elevation of the blood glucose level in a dose-dependent manner. Carmoxirole-induced increase of the blood glucose was significantly attenuated by L-741,626 (D2 receptor antagonist). Previously, we indicated that intrathecal (it) treatment with 0.1 μg/5 μl pertussis toxin (PTX, a Gi/Go inhibitor) produces a hypoglycemic effect in ICR in a long-term manner. In the present study, it pretreatment with PTX for 6 days almost abolished the hyperglycemic effect induced by carmoxirole. The plasma insulin level was elevated by carmoxirole, and L-741,626 or PTX pretreatment reduced carmoxirole-induced increment of the insulin level. In addition, the plasma corticosterone level was increased by carmoxirole but it pretreatment with L-741,626 or PTX did not affect carmoxirole-induced increment of the corticosterone level.

Conclusion

Our results suggest that D2 receptors located in the spinal cord play an important role in the elevation of the blood glucose level. Spinally located inhibitory G-proteins appear to be involved in hyperglycemic effect induced by carmoxirole.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CNS:

Central nerves system

ICR:

Institute of Cancer Research

it :

Intrathecal

PEC:

Polyethylene glycol 400, ethanol, and sodium carboxymethylcellulose solution

PTX:

Pertussis toxin

References

  1. Pozo M, Claret M. Hypothalamic control of systemic glucose homeostasis: the pancreas connection. Trends Endocrinol Metab. 2018;29(8):581–94.

    CAS  PubMed  Google Scholar 

  2. Roh E, Kim M-S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med. 2016;48(3):e216–e316.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Güemes A, Georgiou P. Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med. 2018;4(1):9.

    PubMed  PubMed Central  Google Scholar 

  4. Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the brain a key player in glucose regulation and development of type 2 diabetes? Front Physiol. 2019. https://doi.org/10.3389/fphys.2019.00457.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Agarwal SM, Caravaggio F, Costa-Dookhan KA, Castellani L, Kowalchuk C, Asgariroozbehani R, et al. Brain insulin action in schizophrenia: something borrowed and something new. Neuropharmacology. 2020;163:107633.

    CAS  PubMed  Google Scholar 

  6. Bhattacharya SK, Saraswati M. Effect of intracerebroventricularly administered insulin on brain monoamines and acetylcholine in euglycaemic and alloxan-induced hyperglycaemic rats. Indian J Exp Biol. 1991 Dec;29(12):1095–100.

    CAS  PubMed  Google Scholar 

  7. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189–225.

    CAS  PubMed  Google Scholar 

  8. Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–21717.

    CAS  PubMed  Google Scholar 

  9. Wang H, Yao Y, Liu J, Cao Y, Si C, Zheng R, et al. Dopamine D4 receptor protected against hyperglycemia-induced endothelial dysfunction via PI3K/eNOS pathway. Biochem Biophys Res Commun. 2019;518(3):554–9.

    CAS  PubMed  Google Scholar 

  10. Arnerić S, Chow SA, Long JP, Fischer LJ. Dopamine analog-induced hyperglycemia in rats: involvement of the adrenal medulla and the endocrine pancreas. J Pharmacol Exp Ther. 1984;228(3):551–9.

    PubMed  Google Scholar 

  11. Bina KG, Cincotta AH. Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology. 2000;71(1):68–78.

    CAS  PubMed  Google Scholar 

  12. Murashita M, Kusumi I, Hosoda H, Kangawa K, Koyama T. Acute administration of clozapine concurrently increases blood glucose and circulating plasma ghrelin levels in rats. Psychoneuroendocrinology. 2007;32(7):777–84.

    CAS  PubMed  Google Scholar 

  13. Assié M-B, Carilla-Durand E, Bardin L, Maraval M, Aliaga M, Malfètes N, et al. The antipsychotics clozapine and olanzapine increase plasma glucose and corticosterone levels in rats: comparison with aripiprazole, ziprasidone, bifeprunox and F15063. Eur J Pharmacol. 2008;592(1–3):160–6.

    PubMed  Google Scholar 

  14. Luo S, Liang Y, Cincotta A. Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology. 1999;69(3):160–6.

    CAS  PubMed  Google Scholar 

  15. Takahashi A, Ishimaru H, Ikarashi Y, Maruyama Y. Intraventricular injection of neostigmine increases dopaminergic and noradrenergic nerve activities: hyperglycemic effects and neurotransmitters in the hypothalamus. Neurosci Lett. 1993;156(1–2):54–6.

    CAS  PubMed  Google Scholar 

  16. Saller CF, Kreamer LD. Glucose concentrations in brain and blood: regulation by dopamine receptor subtypes. Brain Res. 1991;546(2):235–40.

    CAS  PubMed  Google Scholar 

  17. Puopolo M. The hypothalamic-spinal dopaminergic system: a target for pain modulation. Neural Regen Res. 2019;14(6):925–30.

    PubMed  PubMed Central  Google Scholar 

  18. Barriere G, Mellen N, Cazalets J-R. Neuromodulation of the locomotor network by dopamine in the isolated spinal cord of newborn rat. Eur J Neurosci. 2004;19(5):1325–35.

    PubMed  Google Scholar 

  19. Buchsbaum MS, Christian BT, Lehrer DS, Narayanan TK, Shi B, Mantil J, et al. D2/D3 Dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia. Schizophrenia Res. 2006;85:232–44.

    Google Scholar 

  20. Cavallotti C, Frati A, Cavallotti D, Leali FMT. Dopaminergic receptors in rat dura mater: pharmacological characteristics. Clin Exptl Pharm Physiol. 2004;31(3):190–4.

    CAS  Google Scholar 

  21. Comella CL. Treatment of restless legs syndrome. Neurotherapeutics. 2014;11:177–87.

    CAS  PubMed  Google Scholar 

  22. Constantinescu CC, Coleman RA, Pan ML, Mukherjee J. Striatal and extrastriatal microPET imaging of D2/D3 dopamine receptors in rat brain with 18F-fallypride and 18F-desmethoxyfallypride. Synapse. 2011;65:778–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaur J, Khararjian A, Coleman RA, et al. Spinal cord dopamine D2/D3 receptors: in vivo and ex vivo imaging in the rat using 18F/11C-fallypride. Nucl Med Biol. 2014;41(10):841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sim Y-B, Park S-H, Kang Y-J, Kim S-M, Lee J-K, Jung J-S, et al. The regulation of blood glucose level in physical and emotional stress models: possible involvement of adrenergic and glucocorticoid systems. Arch Pharm Res. 2010;33(10):1679–83.

    CAS  PubMed  Google Scholar 

  25. Park S-H, Sim Y-B, Lee J-K, Kim S-M, Kang Y-J, Jung J-S, et al. The analgesic effects and mechanisms of orally administered eugenol. Arch Pharm Res. 2011;34(3):501–7.

    CAS  PubMed  Google Scholar 

  26. Hylden JL, Wilcox GL. Intrathecal substance P elicits a caudally-directed biting and scratching behavior in mice. Brain Res. 1981;217(1):212–5.

    CAS  PubMed  Google Scholar 

  27. Glick D, Von Redlich D, Levine S. Fluorometric determination of corticosterone and cortisol in 0.02–0.05 milliliters of plasma or submilligram samples of adrenal tissue. Endocrinology. 1964;74(4):653–5.

    CAS  PubMed  Google Scholar 

  28. Uvnäs-Moberg K, Ahlenius S, Alster P, Hillegaart V. Effects of selective serotonin and dopamine agonists on plasma levels of glucose, insulin and glucagon in the rat. Neuroendocrinology. 1996;63(3):269–74.

    PubMed  Google Scholar 

  29. Durant S, Coulaud J, Homo-Delarche F. Bromocriptine-induced hyperglycemia in nonobese diabetic mice: kinetics and mechanisms of action. Rev Diabet Stud. 2007;4(3):185.

    PubMed  PubMed Central  Google Scholar 

  30. Montmayeur J-P, Borrelli E. Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci. 1991;88(8):3135–9.

    CAS  PubMed  Google Scholar 

  31. Katada T. The inhibitory G protein G(i) identified as pertussis toxin-catalyzed ADP-ribosylation. Biol Pharm Bull. 2012;35(12):2103–11.

    CAS  PubMed  Google Scholar 

  32. Sim YB, Park SH, Kim SS, Lim SM, Jung JS, Lee JK, et al. Pertussis toxin administered spinally induces a hypoglycemic effect on normal and diabetic mice. Pharmacol. 2014;94(1–2):29–40.

    CAS  Google Scholar 

  33. Toyota T, Kai Y, Kakizaki M, Sakai A, Goto Y, Yajima M, et al. Effects of islet-activating protein (IAP) on blood glucose and plasma insulin in healthy volunteers (phase 1 studies). Tohoku J Exp Med. 1980;130(2):105–16.

    CAS  PubMed  Google Scholar 

  34. Hermida OG, Fontela T, Ghiglione M, Uttenthal L. Effect of pertussis pretreatment on plasma glucose and insulin responses to lithium in rats. Br J Pharm. 1991;103(2):1309–12.

    Google Scholar 

  35. Komatsu M, McDermott AM, Gillison SL, Sharp G. Time course of action of pertussis toxin to block the inhibition of stimulated insulin release by norepinephrine. Endocrinology. 1995;136(5):1857–63.

    CAS  PubMed  Google Scholar 

  36. Furman BL, Sidey FM, Wardlaw AC. Role of insulin in the hypoglycaemic effect of sublethal Bordetella pertussis infection in mice. Br J Exp Pathol. 1986;67(2):305–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Furman BL, Wardlaw AC, Stevenson LQ. Bordetella pertussis-induced hyperinsulinaemia without marked hypoglycaemia: a paradox explained. Br J Exp Pathol. 1981;62(5):504–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shankar E, Santhosh KT, Paulose CS. Dopaminergic regulation of glucose-induced insulin secretion through dopamine D2 receptors in the pancreatic islets in vitro. IUBMB Life. 2006;58(3):157–63.

    CAS  PubMed  Google Scholar 

  39. Borowsky B, Kuhn CM. D1 and D2 dopamine receptors stimulate hypothalamo-pituitary-adrenal activity in rats. Neuropharmacology. 1992;31(7):671–8.

    CAS  PubMed  Google Scholar 

  40. Foreman MM, Fuller RW, Hynes MD, Gidda JS, Nichols CL, Schaus JM, et al. Preclinical studies on quinelorane, a potent and highly selective D2-dopaminergic agonist. J Pharmacol Exp Ther. 1989;250(1):227–35.

    CAS  PubMed  Google Scholar 

  41. Kitchen I, Kelly M, Turner M. Dopamine receptor modulation of corticosterone secretion in neonatal and adult rats. J Pharm Pharmacol. 1988;40(8):580–1.

    CAS  PubMed  Google Scholar 

  42. Kim DH, Jung JS, Yan JJ, Suh HW, Son BK, Kim YH, et al. Increased plasma corticosterone, aggressiveness and brain monoamine changes induced by central injection of pertussis toxin. Eur J Pharmacol. 2000;409(1):67–72.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Hallym Research Group Support Program of 2013 (HRF-G-2013-4).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the study design, interpretation, analysis, and review of the manuscript. Study concept and design, JSP and HWS; investigation, JSH and JKL; data curation, JKL and HJL; writing-original draft preparation, JSH and YBS; writing-review and editing, JHF; supervision and funding acquisition, HWS.

Corresponding author

Correspondence to HongWon Suh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Feng, J., Lee, J. et al. The role of spinally located dopamine D2 receptors in the regulation of the blood glucose level in mice. Pharmacol. Rep 72, 1666–1675 (2020). https://doi.org/10.1007/s43440-020-00126-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-020-00126-x

Keywords

Navigation