Skip to main content

Advertisement

Log in

Chlorpheniramine produces cutaneous analgesia in rats

  • Article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

This study sought to assess the cutaneous (peripheral) analgesic effects of antihistamine chlorpheniramine, compared with the long-lasting local anesthetic bupivacaine.

Methods

After chlorpheniramine and bupivacaine were subcutaneously injected under the dorsal skin of the rats, the cutaneous analgesia effect was quantitatively evaluated by scoring the number to which the animal failed to react (cutaneous trunci muscle reflex). The quality and duration of chlorpheniramine and bupivacaine on infiltrative cutaneous analgesia were compared.

Results

We revealed that subcutaneous chlorpheniramine, as well as the local anesthetic bupivacaine elicited cutaneous analgesia in a dosage-dependent manner. Based on their ED50s (50% effective doses), the relative potency was found to be chlorpheniramine [1.13 (1.05–1.22) μmol] < bupivacaine [0.52 (0.46–0.58) μmol] (p < 0.01). When comparing the ED25s, ED50s and ED75s, full recovery time induced by chlorpheniramine was longer (p < 0.01) than that induced by bupivacaine.

Conclusions

Our preclinical data demonstrated that both chlorpheniramine and bupivacaine dose-dependently provoked the cutaneous analgesic effects. Chlorpheniramine with a more prolonged duration was less potent than bupivacaine in inducing cutaneous analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peets EA, Jackson M, Symchowicz S. Metabolism of chlorpheniramine maleate in man. J Pharmacol Exp Ther. 1972;180:364–74.

    CAS  PubMed  Google Scholar 

  2. Moreno RA, Oliveira-Silva D, Sverdloff CE, Borges BC, Rebelo Galvinas PA, Astigarraga RB, et al. Determination of chlorpheniramine in human plasma by HPLC–ESI–MS/MS: application to a dexchlorpheniramine comparative bioavailability study. Biomed Chromatogr. 2010;24:774–81.

    Article  CAS  Google Scholar 

  3. Sankar DV, Li EH, Santare M. Studies on antihistaminic action. I. Effect of chlorpheniramine maleate on blood levels of 5-hydroxytryptamine and histamine in the rabbit. Res Commun Chem Pathol Pharmacol. 1974;7:513–8.

    CAS  PubMed  Google Scholar 

  4. Kuroda T, Nagata S, Takizawa Y, Tamura N, Kusano K, Mizobe F, et al. Pharmacokinetics and pharmacodynamics of d-chlorpheniramine following intravenous and oral administration in healthy thoroughbred horses. Vet J. 2013;197:433–7.

    Article  CAS  Google Scholar 

  5. Siegel C. The use of dexchlorpheniramine to treat nasal allergies. Curr Ther Res Clin Exp. 1964;6:714–5.

    CAS  PubMed  Google Scholar 

  6. Simons FE, Simons KJ. The pharmacology and use of H1-receptor-antagonist drugs. N Engl J Med. 1994;330:1663–70.

    Article  CAS  Google Scholar 

  7. Vickers M. Dextro-chlorpheniramine (polaramine) in allergy: preliminary report of 75 patients and comparison with racemic chlorpheniramine (chlor-trimeton) in 39 patients. J Maine Med Assoc. 1959;50:16–20.

    CAS  PubMed  Google Scholar 

  8. Smellie H, Fry L. Comparison of an antiserotonin (cyproheptadine) and a pure antihistamine chlorpheniramine in hay fever. Acta Allergol. 1962;17:352–7.

    Article  CAS  Google Scholar 

  9. Miller J. A double-blind study of d-isoephedrine combined with chlorpheniramine in symptomatic relief of hay fever. Med Times. 1967;95:306–9.

    CAS  PubMed  Google Scholar 

  10. Xu W, Xia S, Pu J, Wang Q, Li P, Lu L, et al. The antihistamine drugs carbinoxamine maleate and chlorpheniramine maleate exhibit potent antiviral activity against a broad spectrum of influenza viruses. Front Microbiol. 2018;9:2643.

    Article  Google Scholar 

  11. Du F. Therapeutic effect of chlorpheniramine in treating upper airway cough syndrome (UACS) and chronic rhinitis/sinusitis. Pak J Pharm Sci. 2018;31:1679–82.

    CAS  PubMed  Google Scholar 

  12. Pathirana S, Jayawardena S, Meeves S, Thompson GA. Brompheniramine and chlorpheniramine pharmacokinetics following single-dose oral administration in children aged 2 to 17 years. J Clin Pharmacol. 2018;58:494–503.

    Article  CAS  Google Scholar 

  13. Lirk P, Hollmann MW, Strichartz G. The science of local anesthesia: basic research, clinical application, and future directions. Anesth Analg. 2018;126:1381–92.

    Article  CAS  Google Scholar 

  14. Khan MA, Gerner P, Kuo Wang G. Amitriptyline for prolonged cutaneous analgesia in the rat. Anesthesiology. 2002;96:109–16.

    Article  CAS  Google Scholar 

  15. Chen YW, Chiu CC, Lin HT, Wang JJ, Hung CH. Adding dopamine to proxymetacaine or oxybuprocaine solutions potentiates and prolongs the cutaneous antinociception in rats. Anesth Analg. 2018;126:1721–8.

    Article  CAS  Google Scholar 

  16. Han MM, Chiu CC, Wang JJ, Chen YW, Hung CH. Mexiletine co-injected with clonidine increases the quality and duration of cutaneous analgesia in response to skin pinpricks in the rat. Neurosci Lett. 2017;654:23–7.

    Article  CAS  Google Scholar 

  17. Hung CH, Chiu CC, Liu KS, Chen YW, Wang JJ. Synergistic effects of serotonin or dopamine combined with lidocaine at producing nociceptive block in rats. Reg Anesth Pain Med. 2017;42:351–6.

    Article  CAS  Google Scholar 

  18. Petruska JC, Barker DF, Garraway SM, Trainer R, Fransen JW, Seidman PA, et al. Organization of sensory input to the nociceptive-specific cutaneous trunk muscle reflex in rat, an effective experimental system for examining nociception and plasticity. J Comp Neurol. 2014;522:1048–71.

    Article  CAS  Google Scholar 

  19. Akhter KP, Ahmad M, Khan SA, Ramzan M, Shafi I, Muryam B, et al. Application of the piecewise rational quadratic interpolant to the AUC calculation in the bioavailability study. Acta Pol Pharm. 2012;69:81–5.

    CAS  PubMed  Google Scholar 

  20. Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm. 2012;9:2358–63.

    Article  CAS  Google Scholar 

  21. Tzeng JI, Chiu CC, Wang JJ, Hung CH, Chen YW. Spinal sensory and motor blockade by intrathecal doxylamine and triprolidine in rats. J Pharm Pharmacol. 2018;70:1654–61.

    Article  CAS  Google Scholar 

  22. Chou AK, Chiu CC, Chen YW, Wang JJ, Hung CH. Skin nociceptive block with pramoxine delivery by subcutaneous injection in rats. Pharmacol Rep. 2018;70:1180–4.

    Article  CAS  Google Scholar 

  23. Li YY, Chiu CC, Wang JJ, Chen YW, Hung CH. Dopamine enhancement of dextrorphan-induced skin antinociception in response to needle pinpricks in rats. Pharmacol Rep. 2019;71:732–7.

    Article  CAS  Google Scholar 

  24. Yeh SY. The effect of antihistaminic drugs on pentazocine antinociception in the rat. Pharmacol Biochem Behav. 1986;24:925–30.

    Article  CAS  Google Scholar 

  25. Tzeng JI, Lin HT, Chen YW, Hung CH, Wang JJ. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats. Eur J Pharmacol. 2015;752C:55–60.

    Article  Google Scholar 

  26. Arrang JM, Uvnäs B. Histamine and histamine antagonists. Berlin: Springer; 1991.

    Google Scholar 

  27. Juan H, Lembeck F. Action of peptides and other algesic agents on paravascular pain receptors of the isolated perfused rabbit ear. Naunyn Schmiedebergs Arch Pharmacol. 1974;283:151–64.

    Article  CAS  Google Scholar 

  28. Rumore MM, Schlichting DA. Analgesic effects of antihistaminics. Life Sci. 1985;36:403–16.

    Article  CAS  Google Scholar 

  29. Raffa RB. Antihistamines as analgesics. J Clin Pharm Ther. 2001;26:81–5.

    Article  CAS  Google Scholar 

  30. Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology. 1979;51:285–7.

    Article  CAS  Google Scholar 

  31. Takenami T, Yagishita S, Murase S, Hiruma H, Kawakami T, Hoka S. Neurotoxicity of intrathecally administered bupivacaine involves the posterior roots/posterior white matter and is milder than lidocaine in rats. Reg Anesth Pain Med. 2005;30:464–72.

    Article  CAS  Google Scholar 

  32. Voicu VA, Mircioiu I, Sandulovici R, Mircioiu C, Plesa C, Velescu BS, et al. Chlorpheniramine potentiates the analgesic effect in migraine of usual caffeine, acetaminophen, and acetylsalicylic acid combination. Front Pharmacol. 2017;8:758.

    Article  Google Scholar 

  33. Job CA, Fernandez MA, Dorph DJ, Betcher AM. Inguinal hernia repair. Comparison of local, epidural, and general anesthesia. N Y State J Med. 1979;79:1730–3.

    CAS  PubMed  Google Scholar 

  34. Orhan ME, Yuksel U, Bilgin F, Dogrul A. Comparison of the local anesthetic effects of chlorpheniramine, midazolam, lidocaine, and normal saline after intradermal injection. Med Sci Monit Int Med J Exp Clin Res. 2007;13:PI7–11.

    CAS  Google Scholar 

  35. Zanboori A, Tamaddonfard E, Mojtahedein A. Effects of chlorpheniramine and ranitidine on the visceral nociception induced by acetic acid in rats: role of opioid system. Pak J Biol Sci. 2008;11:2428–32.

    Article  CAS  Google Scholar 

  36. de Oliveira GG, Feitosa A, Loureiro K, Fernandes AR, Souto EB, Severino P. Compatibility study of paracetamol, chlorpheniramine maleate and phenylephrine hydrochloride in physical mixtures. Saudi Pharm J. 2017;25:99–103.

    Article  Google Scholar 

Download references

Funding

The financial support provided by the Grants (MOST 107-2628-B-039-001; MOST 107-2314-B-384-003-MY2) from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsia Hung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, CC., Liu, KS., Chen, YW. et al. Chlorpheniramine produces cutaneous analgesia in rats. Pharmacol. Rep 72, 827–832 (2020). https://doi.org/10.1007/s43440-019-00028-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-019-00028-7

Keywords

Navigation