Skip to main content

Advertisement

Log in

Topology and start-up strategy for DC–DC transformers based on voltage balancing unit

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

As a core piece of equipment in DC distribution networks, DC solid-state transformers (DCSSTs) are attracting more and more attention in academia and industry. Due to the limitations in terms of the electrical stress of the switches, the input series output parallel (ISOP) structure is adopted in DCSSTs. This paper proposed an improved DCSST topology based on a voltage balancing unit (VBU). This topology has the advantages of higher power density, reduced weight, and cascaded number without compromising efficiency, cost, or reliability. The working modes, mathematical models, and control strategy are analyzed. In addition, a start-up strategy and a parameter design method are proposed in this paper. Simulation and experimental results verify the correctness and effectiveness of the proposed solution. The proposed DCSST is a practical scheme for the application of DC distribution networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Liu, J., Shanmei, C., Anwen, S.: A high efficiency two-stage inverter for photovoltaic grid-connected generation systems. J. Power Electron. 17(1), 200–211 (2017)

    Article  Google Scholar 

  2. Katayama, N., Tosaka, S., Yamanaka, T., Hayase, M., Dowaki, K., Kogoshi, S.: New topology for dc–dc converters used in fuel cell–electric double layer capacitor hybrid power source systems for mobile devices. IEEE Trans. Ind. Appl. 52(1), 313–321 (2015)

    Article  Google Scholar 

  3. Zhang, J., Liu, J., Yang, J., Zhao, N., Wang, Y., Zheng, T.Q.: A modified DC power electronic transformer based on series connection of full-bridge converters. IEEE Trans. Power Electron. 34(3), 2119–2133 (2018)

    Article  Google Scholar 

  4. Habib, S., Khan, M.M., Abbas, F., Ali, A., Faiz, M.T., Ehsan, F., Tang, H.: Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE J. Power Energy Syst. 6(4), 911–929 (2020)

    Google Scholar 

  5. Xu, F., Guo, B., Xu, Z., Tolbert, L.M., Wang, F., Blalock, B.J.: Paralleled three-phase current-source rectifiers for high-efficiency power supply applications. IEEE Trans. Ind. Appl. 20(1), 308–318 (2020)

    Google Scholar 

  6. Dam, D.-H., Lee, H.-H.: Battery–inductor–supercapacitor hybrid energy storage system for DC microgrids. J. Power Electron. 17(1), 200–211 (2017)

    Article  Google Scholar 

  7. Wang, Y., Song, Q., Zhao, B., Li, J., Sun, Q., Liu, W.: Quasi-square-wave modulation of modular multilevel high-frequency DC converter for medium-voltage DC distribution application. IEEE Trans. Power Electron. 33(9), 7480–7495 (2017)

    Article  Google Scholar 

  8. CIGRE WG C6.31.: Medium Voltage Direct Current (MVDC) Grid Feasibility Study. Technical Brochure no. 793 (2020)

  9. Zhao, B., Song, Q., Liu, W., Sun, Y.: Overview of dual-activebridge isolated bidirectional dc–dc converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091–4106 (2014)

    Article  Google Scholar 

  10. Doncker, R.W.A.A.D., Divan, D.M., Kheraluwala, M.H.: A threephase soft-switched high-power-density dc/dc converter for high-power applications. IEEE Trans. Ind. Appl. 27(1), 63–73 (1991)

    Article  Google Scholar 

  11. Zhu, L.: A novel soft-commutating isolated boost full-bridge ZVS-PWM dc-dc converter for bidirectional high power applications. IEEE Trans. Power Electron. 21(2), 422–429 (2006)

    Article  Google Scholar 

  12. Inoue, S., Akagi, H.: A bidirectional isolated dc-dc converter as a core circuit of the next-generation medium-voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535–542 (2007)

    Article  Google Scholar 

  13. Xie, Y., Sun, J., Freudenberg, J.S.: Power flow characterization of a bidirectional Galvanically isolated high-power dc–dc converter over a wide operating range. IEEE Trans. Power Electron. 25(1), 54–66 (2010)

    Article  Google Scholar 

  14. Zhao, B., Song, Q., Li, J., Liu, W., Liu, G., Zhao, Y.: High-frequency-link dc transformer based on switched capacitor for medium-voltage dc power distribution application. IEEE Trans. Power Electron. 31(7), 4766–4777 (2016)

    Google Scholar 

  15. Wang, Y., Song, Q., Sun, Q., Zhao, B., Li, J., Liu, W.: Multilevel MVDC link strategy of high-frequency-link DC transformer based on switched capacitor for MVDC power distribution. IEEE Trans. Ind. Electron. 64(4), 2829–2835 (2017)

    Article  Google Scholar 

  16. Bai, H., Mi, C.: Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control. IEEE Trans. Power Electron. 23(6), 2905–2914 (2008)

    Article  Google Scholar 

  17. Bai, H., Nie, Z., Mi, C.: Experimental comparison of traditional phase-shift, dual-phase-shift, and model-based control of isolated bidirectional dc-dc converters. IEEE Trans. Power Electron. 25(6), 1444–1449 (2010)

    Article  Google Scholar 

  18. Krismer, F., Kolar, J.W.: Efficiency-optimized high-current dual active bridge converter for automotive applications. IEEE Trans. Ind. Electron. 59(7), 2745–2760 (2012)

    Article  Google Scholar 

  19. Jain, A.K., Ayyanar, R.: PWM control of dual active bridge: comprehensive analysis and experimental verification. IEEE Trans. Power Electron. 26(4), 1215–1227 (2011)

    Article  Google Scholar 

  20. Wu, K., Silva, C.W., Dunford, W.G.: Stability analysis of isolated bidirectional dual active full-bridge dc-dc converter with triple phaseshift control. IEEE Trans. Power Electron. 27(4), 2007–2017 (2012)

    Article  Google Scholar 

  21. Shi, H., Wen, H., Chen, J., Hu, Y., Jiang, L., Chen, G., Ma, J.: Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control. IEEE Trans. Ind. Appl. 54(4), 3483–3496 (2018)

    Article  Google Scholar 

  22. Zhao, B., Yu, Q., Sun, W.: Extended-phase-shift control of isolated bidirectional dc–dc converter for power distribution in microgrid. IEEE Trans. Power Electron. 27(11), 4667–4680 (2012)

    Article  Google Scholar 

  23. Li, X., Bhat, A.K.: Analysis and design of high-frequency isolated dual-bridge series resonant dc/dc converter. IEEE Trans. Power Electron. 25(4), 850–862 (2010)

    Article  Google Scholar 

  24. Tian, S., Lee, F.C., Li, Q.: A simplified equivalent circuit model of series resonant converter. IEEE Trans. Power Electron. 31(5), 3922–3931 (2015)

    Article  Google Scholar 

  25. Zhang, J., Liu, J., Yang, J., Zhao, N., Wang, Y., Zheng, T.Q.: An LLC-LC type bidirectional control strategy for an LLC resonant converter in power electronic traction transformer. IEEE Trans. Ind. Electron. 65(11), 8595–8604 (2018)

    Article  Google Scholar 

  26. Chen, Q., Wang, J., Ji, Y.: Control scheme of bidirectional LLC resonant DC-DC transformer for soft start and power conversion. Trans. China Electr. Soc. 29(8), 180–186 (2014). (in Chinese)

    Google Scholar 

  27. Jiang, T., Zhang, J., Wu, X., Sheng, K., Wang, Y.: A bidirectional LLC resonant converter with automatic forward and backward mode transition. IEEE Trans. Power Electron. 30(2), 757–770 (2014)

    Article  Google Scholar 

  28. Shi, L., Liu, B., Duan, S.: Current sharing method based on optimal phase shift control for interleaved three-phase half-bridge LLC converter with floating y-connection. J. Power Electron. 19(4), 934–943 (2019)

    Google Scholar 

  29. Yeon, C., Kim, J., Park, M., Lee, I., Moon, G.: Improving the light-load regulation capability of LLC series resonant converter using impedance analysis. IEEE Trans. Power Electron. 32(9), 7056–7067 (2017)

    Article  Google Scholar 

  30. Kim, C., Baek, J., Lee, J.: High-efficiency single-stage LLC resonant converter for wide-input-voltage range. IEEE Trans. Power Electron. 33(9), 7832–7840 (2018)

    Article  Google Scholar 

  31. Martins, L.F., Stone, D., Foster, M.: Modelling of phase-shift modulated bidirectional CLLC resonant converter. IET Power Electron. 13(12), 2628–2637 (2020)

    Article  Google Scholar 

  32. Zou, S., Lu, J., Mallik, A., Khaligh, A.: Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles. IEEE Trans. Ind. Appl. 54(2), 998–1005 (2018)

    Article  Google Scholar 

  33. Zong, S., Fan, G., Yang, X.: Double voltage rectification modulation for bidirectional DC/DC resonant converters for wide voltage range operation. IEEE Trans. Power Electron. 34(7), 6510–6521 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the State Grid Corporation of China Science and Technology Project: Research on the key technologies of high efficiency and compact multi-port DC transformer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialin Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zha, K., Tang, X. et al. Topology and start-up strategy for DC–DC transformers based on voltage balancing unit. J. Power Electron. 21, 1072–1083 (2021). https://doi.org/10.1007/s43236-021-00247-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00247-3

Keywords

Navigation