Skip to main content

Advertisement

Log in

Protective efficacy of Coriandrum sativum seeds against arsenic induced toxicity in Swiss albino mice

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Arsenic poisoning in ground water is one of the most sensitive environmental pollutant causing serious pollution all over the world. Chronic arsenic exposure through drinking water to humans leads to major public health related issues. There have been very meagre studies which reported that, the plant constituents proved to exhibit protective effect from arsenicosis. Therefore, the present study aims to evaluate the protective efficacy of Coriandrum sativum seeds extract against sodium arsenite induced toxicity in Swiss albino mice. In the present study twenty-four male healthy Swiss albino mice (30 ± 5 g) were divided into four groups (n = 6), where the control group received normal diet and water; group II and group III treated with sodium arsenite (2 mg per kg body weight per day) for 2 and 4 weeks respectively. The group IV mice were administered with C.sativum seeds extract at the dose of 150 mg per kg body weight per day for 4 weeks upon sodium arsenite pretreated (2 mg/kg body weight for 4 weeks per day) mice. After the complete dose duration, all the treatment group animals were sacrificed same day for haematological, biochemical and histopathological study. In the arsenic treated mice, there were significant (p < 0.0001) changes in the serum levels of ALT, AST, ALP, urea, uric acid and creatinine as well as in the haematological parameters. In contrast, after the administration with C.sativum seeds extract upon arsenic pretreated mice, there was significant (p < 0.0001) improvement observed in the hepatic and renal biomarker parameters as well as haematological variables. In the arsenic intoxicated mice,  after administration with C.sativum seeds extract there was significant (p < 0.0001) reduction in the arsenic concentration in blood, liver and kidney tissues as well as in the serum LPO levels. Furthermore, the histopathological study showed that, C.sativum seeds extract administrated group of mice significantly restored the liver and kidney at cellular level against arsenic induced toxicity. The entire study concludes that C.sativum seeds extract possesses the ameliorative effect against arsenic induced liver and kidney intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tchounwou P (1999) Development of Public health advisories for arsenic in drinking water. Rev Environ Health 14:211–230. https://doi.org/10.1515/reveh.1999.14.4.211

    Article  CAS  PubMed  Google Scholar 

  2. NRC (1999) Arsenic in drinking water. National Research Council, National Academy of Sciences, Washington

    Google Scholar 

  3. Rahman W (2006) Arsenic exposure in Bangladesh: the reproductive and developmental health effects in humans. In: Proceedings of the Philadelphia annual meeting. pp 67–93

  4. Chakraborti D, Singh SK, Rahman MM, Dutta RN, Mukherjee SC, Pati S, Kar PB (2018) Groundwater arsenic contamination in the Ganga River Basin: a future health danger. Int J Environ Res Public Health 15:180. https://doi.org/10.3390/ijerph15020180

    Article  CAS  PubMed Central  Google Scholar 

  5. Singh SK, Ghosh AK, Kumar A, Kislay K, Kumar C, Tiwari RR, Parwez R, Kumar N, Imam MD (2014) Groundwater arsenic contamination and associated health risks in Bihar, India. Int J Environ Res 8:49–60. https://doi.org/10.22059/IJER.2014.693

    Article  CAS  Google Scholar 

  6. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111:1194–1201. https://doi.org/10.1289/ehp.5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016) Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: risk evaluation. Environ Sci Pollut Res Int 23:9492–9504. https://doi.org/10.1007/s11356-016-6149-8

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Ali M, Kumar R, Rahman SM, Srivastava A, Chayal KN, Sagar V, Kumari R et al (2019) High arsenic concentration in blood samples of People of village Gyaspur Mahaji, Patna, Bihar Drinking Arsenic-Contaminated Water. Expo Health 12:1–10. https://doi.org/10.1007/s11356-021-18207-6

    Article  Google Scholar 

  9. Aposhian HV, Aposhian MM (1989) Newer developments in arsenic toxicity. J Am Coll Toxicol 8:1297–1305. https://doi.org/10.3109/10915818909009121

    Article  Google Scholar 

  10. Majhi CR, Khan S, Leo MDM, Manimaran A, Sankar P, Sarkar SN (2011) Effects of acetaminophen on reactive oxygen species and nitric oxide redox signaling in kidney of arsenic-exposed rats. Food Chem Toxicol 49:974–982. https://doi.org/10.1016/j.fct.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Patra PH, Bandyopadhyay S, Kumar R, Datta BK, Maji C, Biswas S, Dash JR, Sar TK, Sarkar S, Manna SK, Chakraborty AK (2012) Quantitative imaging of arsenic and its species in goat following long term oral exposure. Food Chem Toxicol 50:1946–1950. https://doi.org/10.1016/j.fct.2012.03.072

    Article  CAS  PubMed  Google Scholar 

  12. Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Health Part A 41:2399–2428. https://doi.org/10.1080/10934520600873571

    Article  CAS  Google Scholar 

  13. Mazumder DG (2008) Chronic arsenic toxicity and human health. Indian J Med Res 128:436–447

    Google Scholar 

  14. Kumar A, Rahman MS, Kumar R, Ali M, Niraj PK, Srivastava A et al (2019) Arsenic contamination in groundwater causing impaired memory and intelligence in school children of Simri village of Buxar district of Bihar. J Ment Health Hum Behav 24:132–138. https://doi.org/10.4103/jmhhb.jmhhb_31_18

    Article  Google Scholar 

  15. Kumar A, Ali Md, Md RS, Md IA, Anand G et al (2015) Ground water arsenic poisoning in “Tilak Rai Ka Hatta” village of Buxar district, Bihar, India causing severe health hazards and hormonal imbalance. J Environ Anal Toxicol 5:290. https://doi.org/10.4172/2161-0525.1000290

    Article  Google Scholar 

  16. Kumar A, Rahman M, Iqubal M, Ali M, Niraj PK, Anand G et al (2016) Ground water arsenic contamination: a local survey in India. Int J Prev Med 7:100. https://doi.org/10.4103/2008-7802.188085

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rahman MS, Kumar A, Kumar R, Ali M, Ghosh AK, Singh SK (2019) Comparative quantification study of arsenic in the groundwater and biological samples of Simri village of Buxar District, Bihar, India. Indian J Occup Environ Med 23:126–132. https://doi.org/10.4103/ijoem.IJOEM_240_18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Muthumani M, Miltonprabu S (2012) Arsenic induced oxidative stress and its possible reversal by chelation therapy. Res Rev J Toxicol 2:16–37

    Google Scholar 

  19. Sharma MM, Sharma RK (2004) Coriander. In: Peter KV (ed) Handbook of herbs and spices, vol 2. CRC, Woodhead Publishing Limited, Sawston, pp 145–161

    Chapter  Google Scholar 

  20. Dua A, Garg G, Kumar D, Mahajan R (2014) Polyphenolic composition and antimicrobial potential of methanolic coriander (Coriandrum sativum) seed extract. Int J Pharm Sci Res 5:2302. https://doi.org/10.13040/IJPSR.0975-8232.5(6).2302-08

    Article  Google Scholar 

  21. Meloa EA, Filhob JM, Guerrac NB (2005) Characterizations of antioxidant compounds in aqueous coriander extract (Coriandrum sativum L.). Leb Wiss Technol 38:15–19. https://doi.org/10.1016/j.lwt.2004.03.011

    Article  CAS  Google Scholar 

  22. Wangensteen H, Samuelsen AB, Malterud KE (2004) Antioxidant activity in extracts from coriander. Food Chem 88:293–297. https://doi.org/10.1016/j.foodchem.2004.01.047

    Article  CAS  Google Scholar 

  23. Aissaoui A, Zizi S, Israili ZH, Lyoussi B (2011) Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J Ethnopharmacol 137:652–661. https://doi.org/10.1016/j.jep.2011.06.019

    Article  PubMed  Google Scholar 

  24. Filomena S, Susana F, Andreia D (2011) Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 2011:1–6. https://doi.org/10.1016/j.phymed.2011.06.033

    Article  CAS  Google Scholar 

  25. Cortés-Eslava J, Gómez-Arroyo S, Villalobos-Pietrini R, Espinosa-Aguirre JJ (2004) Antimutagenicity of coriander (Coriandrum sativum) juice on the mutagenesis produced by plant metabolites of aromatic amines. Toxicol Lett 153:283–292. https://doi.org/10.1016/j.toxlet.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  26. Pandey A, Bigoniya P, Raj V, Patel KK (2011) Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity. J Pharm Bioallied Sci 3:435. https://doi.org/10.4103/0975-7406.84462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lakhera A, Ganeshpurkar A, Bansal D, Dubey N (2015) Chemopreventive role of Coriandrum sativum against gentamicin-induced renal histopathological damage in rats. Interdiscip Toxicol 8:99–102. https://doi.org/10.1515/intox-2015-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhanapakiam P, Joseph JM, Ramaswamy VK, Moorthi M, Kumar AS (2007) The cholesterol lowering property of coriander seeds (Coriandrum sativum): mechanism of action. J Environ Biol 29:53–56

    Google Scholar 

  29. Chithra V, Leelamma S (2000) Coriandrum sativum—effect on lipid metabolism in 1, 2-dimethyl hydrazine induced colon cancer. J Ethnopharmacol 71:457–463. https://doi.org/10.1016/s0378-8741(00)00182-3

    Article  CAS  PubMed  Google Scholar 

  30. Mansoor SA, Al-khamis KI, Mohammad WI, Parmar NS, Tariq M, Ageel AM (1987) Post-coital antifertility activity of the seeds of Coriandrum sativum in rats. J Ethnopharmacol 21:165–173. https://doi.org/10.1016/0378-8741(87)90126-7

    Article  Google Scholar 

  31. Kansal L, Sharma V, Sharma A, Lodi S, Sharma SH (2011) Protective role of Coriandrum sativum (coriander) extracts against lead nitrate induced oxidative stress and tissue damage in the liver and kidney in male mice. Int J Appl Biopharm Tech 2:65–83. https://doi.org/10.13040/IJPSR.0975-8232.4(7).2789-93

    Article  CAS  Google Scholar 

  32. Aga M, Iwaki K, Ueda Y, Ushio S, Masaki N, Fukuda S, Kimoto T, Ikeda M, Kurimoto M (2001) Preventive effect of Coriandrum sativum (Chinese parsley) on localized lead deposition in ICR mice. J Ethnopharmacol 77:203–208. https://doi.org/10.1016/s0378-8741(01)00299-9

    Article  CAS  PubMed  Google Scholar 

  33. Fatima N, Fatmi N, Shahzada MZ, Sharma S, Kumar R, Ali M (2017) Hepatoprotective effect of Ferula assafoetida against arsenic induced toxicity in Swiss albino mice. J Drug Discov Dev Deliv 4:1030

    Google Scholar 

  34. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63. https://doi.org/10.1093/ajcp/28.1.56

    Article  CAS  PubMed  Google Scholar 

  35. Kind PRH, King EJ (1954) Determination of alkaline phosphatase activity in serum. J Clin Pathol 7:322–326. https://doi.org/10.1136/jcp.7.4.322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fawcett JK, Scott J (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159. https://doi.org/10.1136/jcp.13.2.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berthelot MPE (1859) Berthelot’s reaction mechanism. Rep Chim Appl 384:2884

    Google Scholar 

  38. Bones RW, Tausky HH (1945) Colorimetric determination of creatinine by the Jaffe reaction. J Biol Chem 158:581–591

    Article  Google Scholar 

  39. Fossati P, Prencipe L (1980) Enzymatic colorimetric method of the determination of uric acid in serum. Clin Chem 26:227–231

    Article  CAS  Google Scholar 

  40. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431. https://doi.org/10.1016/0076-6879(90)86135-i

    Article  CAS  PubMed  Google Scholar 

  41. NIOSH (National Institute for Occupational Safety and Health) (1994) Elements in blood or tissue. Method: 8005. In: NIOSH manual of analytical methods, vol 4. OH Cincinnati: Department of Health and Human Service, National Institute of Occupational Safety and Health. DHHS Publication pp. 94–113. https://www.cdc.gov/niosh/docs/2003-154/pdfs/8005.pdf

  42. Miller WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Can Res 62:3893–3903

    CAS  Google Scholar 

  43. Hsueh YM, Chung CJ, Shiue HS, Chen JB, Chiang SS, Yang MH, Tai CW, Su CT (2009) Urinary arsenic species and CKD in a Taiwanese population: a case-control study. Am J Kidney Dis 54:859–870. https://doi.org/10.1053/j.ajkd.2009.06.016

    Article  PubMed  Google Scholar 

  44. Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP, Osterloh JD (2009) Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 2003–2004. J Eposure Sci Environ Epidemiol 19:59–68. https://doi.org/10.1038/jes.2008.32

    Article  CAS  Google Scholar 

  45. Watanabe T, Hirano S (2013) Metabolism of arsenic and its toxicological relevance. Arch Toxicol 87:969–979. https://doi.org/10.1007/s00204-012-0904-5

    Article  CAS  PubMed  Google Scholar 

  46. Fatima N, Fatmi N, Shahzada MZ, Sharma S, Kumar R, Ali M, Kumar A (2018) Ameliorating effect of Cucumis sativus (Cucumbers) against arsenic induced toxicity in mice. Open J Pathol 8:78–84. https://doi.org/10.4236/ojpathology.2018.83009

    Article  CAS  Google Scholar 

  47. Iqbal MJ, Butt MS, Suleria HAR (2019) Coriander (Coriandrum sativum L.): bioactive molecules and health effects. In: Mérillon JM, Ramawat K (eds) Bioactive molecules in food reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_44

    Chapter  Google Scholar 

  48. Kang LP, Qi LH, Zhang JP, Shi N, Zhang M, Wu TM, Chen J (2001) Effect of genistein and quercetin on proliferation, collagen synthesis, and type I procollagen mRNA levels of rat hepatic stellate cells. Acta Pharmacol Sin 22:793–796

    PubMed  Google Scholar 

  49. Mao YQ, Liu XJ, Jiang Y, Wu HB (2004) Effect of quercetin on the signal pathway of TGFbeta1 in activated hepatic stellate cells. Sichuan da xue xue bao. Yi xue ban= J Sichuan Univ Med Sci Ed 35:802–805

    CAS  Google Scholar 

  50. Ghosh A, Mandal AK, Sarkar S, Das N (2011) Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats. Drug Deliv 18:451–459. https://doi.org/10.3109/10717544.2011.577110

    Article  CAS  PubMed  Google Scholar 

  51. Fatmi N, Fatima N, Shahzada MZ, Sharma S, Kumar R, Ali M, Kumar A (2017) Effect of aqueous extracts of green tea in arsenic induced toxicity in mice. Open J Plant Sci 2:011–014

    Article  Google Scholar 

  52. Schnellmann RG (2001) Toxic responses of the kidney, chapter 14. In: Klaassen D (ed) Casarett and doull’s toxicology, 6th edn. The McGraw-Hill Companies, Columbus, pp 491–502

    Google Scholar 

  53. Saxena PN, Anand S, Saxena N, Bajaj P (2009) Effect of arsenic trioxide on renal functions and its modulation by Curcuma aromatica leaf extract in albino rat. J Environ Biol 30:527–531

    CAS  PubMed  Google Scholar 

  54. Gross JL, De Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176. https://doi.org/10.2337/diacare.28.1.164

    Article  PubMed  Google Scholar 

  55. Msaada K, Jemia MB, Salem N, Bachrouch O, Sriti J, Tammar S, Bettaieb I, Jabri I, Kefi S, Limam F, Marzouk B (2017) Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab J Chem 10:S3176–S3183. https://doi.org/10.1016/j.arabjc.2013.12.011

    Article  CAS  Google Scholar 

  56. Khrenova DK, Dargaeva TD, Nikolaev SM, Fedotovskikh NN, Brutko LI (1986) Qualitative phytochemical analysis of antiulcerous drug prepared from plants. Farmatsiya Mosc 35:46–48

    CAS  Google Scholar 

  57. Manna P, Sinha M, Sil PC (2008) Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol 82:137–149. https://doi.org/10.1007/s00204-007-0272-8

    Article  CAS  PubMed  Google Scholar 

  58. Li D, Morimoto K, Takeshita T, Lu Y (2001) Arsenic induces DNA damage via reactive oxygen species in human cells. Environ Health Prev Med 6:27. https://doi.org/10.1007/BF02897306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Levent G, Ali A, Ahmet A, Polat EC, Aytaç Ç, Ayşe E, Ahmet S (2006) Oxidative stress and antioxidant defense in patients with chronic hepatitis C patients before and after pegylated interferon alfa-2b plus ribavirin therapy. J Transl Med 4:25. https://doi.org/10.1186/1479-5876-4-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sriti J, Wannes WA, Talou T, Mhamdi B, Hamdaoui G, Marzouk B (2010) Lipid, fatty acid and tocol distribution of coriander fruit’s different parts. Ind Crops Prod 31:294–300. https://doi.org/10.1016/j.indcrop.2009.11.006

    Article  CAS  Google Scholar 

  61. Divya P, Puthusseri B, Neelwarne B (2012) Carotenoid content, its stability during drying and the antioxidant activity of commercial coriander (Coriandrum sativum L.) varieties. Food Res Int 45:342–350. https://doi.org/10.1016/j.foodres.2011.09.021

    Article  CAS  Google Scholar 

  62. Reische DW, Lillard DA, Eitenmiller RR (2002) Antioxidants. In: Akoh CC, Min DB (eds) Food lipids, 2nd edn. Marcel Dekker, NY, pp 489–516

    Google Scholar 

  63. Ferzand R, Gadahi JA, Saleha S, Ali Q (2008) Histological and haematological disturbance caused by arsenic toxicity in mice model. Pak J Biol Sci 11:1405–1413. https://doi.org/10.3923/pjbs.2008.1405.1413

    Article  CAS  PubMed  Google Scholar 

  64. Kumar V, Akhouri V, Singh SK, Kumar A (2020) Phytoremedial effect of Tinospora cordifolia against arsenic induced toxicity in Charles Foster rats. Biometals 33:379–396. https://doi.org/10.1007/s10534-020-00256-y

    Article  CAS  PubMed  Google Scholar 

  65. Mershiba SD, Dassprakash MV, Saraswathy SD (2013) Protective effect of naringenin on hepatic and renal dysfunction and oxidative stress in arsenic intoxicated rats. Mol Biol Rep 40:3681–3691. https://doi.org/10.1007/s11033-012-2444-8

    Article  CAS  PubMed  Google Scholar 

  66. Lu M, Wang H, Li XF, Lu X, Cullen WR, Arnold LL, Cohen SM, Le XC (2004) Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood. Chem Res Toxicol 17:1733–1742. https://doi.org/10.1021/tx049756s

    Article  CAS  PubMed  Google Scholar 

  67. Erslev AJ, Gabuzda TG (1979) Pathophysiology of hematologic disorder. In: Sodeman WA, Sodeman TM (eds) Pathologic physiology, mechanisms of diseases, 6th edn. WB Saunders Company, Philadelphia, pp 587–741

    Google Scholar 

  68. Sharma V, Kansal L, Sharma A, Lodi S, Sharma SH (2011) Ameliorating effect of Coriandrum sativum extracts on hematological and immunological variables in an animal model of lead intoxication. J Pharm Allied Health Sci 1:16–29. https://doi.org/10.3923/jpahs.2011.16.29

    Article  Google Scholar 

  69. Barai M, Ahsan N, Paul N, Hossain K, Abdur Rashid M, Kato M, Ohgami N, Azim Akhand A (2017) Amelioration of arsenic-induced toxic effects in mice by dietary supplementation of Syzygium cumini leaf extract. Nagoya J Med Sci 79:167–177. https://doi.org/10.18999/nagjms.79.2.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Islam MZ, Awal MA, Mostofa M, Ghosh A, Khair A (2009) Effect of spinach against arsenic toxicity in rats. Bangladesh J Vet Med 7:358–363

    Article  Google Scholar 

  71. Chung RT (2017) Detoxification effects of phytonutrients against environmental toxicants and sharing of clinical experience on practical applications. Environ Sci Pollut Res Int 24:8946–8956. https://doi.org/10.1007/s11356-015-5263-3

    Article  CAS  PubMed  Google Scholar 

  72. Sharma V, Kansal L, Sharma A (2010) Prophylactic efficacy of Coriandrum sativum (Coriander) on testis of lead-exposed mice. Biol Trace Elem Res 136:337–354. https://doi.org/10.1007/s12011-009-8553-0

    Article  CAS  PubMed  Google Scholar 

  73. Velaga MK, Yallapragada PR, Williams D, Rajanna S, Bettaiya R (2014) Hydroalcoholic seed extract of Coriandrum sativum (Coriander) alleviates lead-induced oxidative stress in different regions of rat brain. Biol Trace Elem Res 159:351–363. https://doi.org/10.1007/s12011-014-9989-4

    Article  CAS  PubMed  Google Scholar 

  74. Eaves-Pyles T, Wong HR, Alexander JW (2000) Sodium arsenite induces the stress response in the gut and decreases bacterial translocation in a burned mouse model with gut-derived sepsis. Shock (Augusta, Ga.) 13:314–319. https://doi.org/10.1097/00024382-200004000-00010

    Article  CAS  Google Scholar 

  75. Wangensteen H, Samuelsen AB, Malterud KE (2004) Antioxidant activity in extracts from coriander. Food Chem 88:293–297. https://doi.org/10.1016/j.foodchem.2004.01.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mahavir Cancer Sansthan and Research Centre, Patna for Animal and laboratory facilities and infrastructural facilities.

Funding

This research work was financially supported by the institute itself (Mahavir Cancer Sansthan and Research Centre, Patna, Bihar, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, V., Akhouri, V. et al. Protective efficacy of Coriandrum sativum seeds against arsenic induced toxicity in Swiss albino mice. Toxicol Res. 38, 437–447 (2022). https://doi.org/10.1007/s43188-022-00123-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-022-00123-7

Keywords

Navigation