Skip to main content

Advertisement

Log in

Short-term E-cigarette toxicity effects on brain cognitive memory functions and inflammatory responses in mice

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

Exposure to cigarette smoke (CS) is associated with an increased risk of several neurological diseases such as stroke, Alzheimer’s disease, and dementia. At present, commercialization of E-cigarettes (ECs) is increasing, and they are advertised as a less harmful nicotine-delivery system. There are, however, limited studies regarding the neurotoxicity effects of ECs on the brain, which remains a subject of debate. In the present study, we aimed to evaluate the in vivo effects of short-term EC vapor exposure on the brain and compare them with the effects of cigarette smoke (CS). BALB/c mice were exposed to air, CS, and EC for 14 days. We then assessed the inflammatory responses, oxidative stress, and cognitive functions of the mice by using maze tests. Cognitive spatial tests showed that the mice exposed to CS and ECs had delayed time in finding food rewards. EC exposure demonstrated no improvement in spatial memory learning to find the food reward on the next day. This implies that CS and EC exposure possibly causes damage to the olfactory system. Notably, EC exposure potentially causes abnormalities in mice memory functions. Histological staining of the cerebral cortex of mice brain in the EC-exposed group demonstrated inflammatory responses such as necrosis and cytoplasm vacuolization. Immunohistochemical staining revealed high expression of proinflammatory cytokine TNF-α in both the EC- and CS-exposed groups. Hence, we conclude that ECs share similar toxicity profiles as CS, which potentially negatively impact brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chan YL, Saad S, Al-Odat I, Zaky AA, Oliver B, Pollock C, Li W, Jones NM, Chen H (2016) Impact of maternal cigarette smoke exposure on brain and kidney health outcomes in female offspring. Clin Exp Pharmacol Physiol 43:1168–1176

    CAS  PubMed  Google Scholar 

  2. Massarsky A, Prasad GL, Di Giulio RT (2018) Total particulate matter from cigarette smoke disrupts vascular development in zebrafish brain (Danio rerio). Toxicol Appl Pharmacol 339:85–96

    CAS  PubMed  Google Scholar 

  3. Yuan M, Cross SJ, Loughlin SE, Leslie FM (2015) Nicotine and the adolescent brain. J Physiol 593:3397–3412

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mendrek A, Monterosso J, Simon SL, Jarvik M, Brody A, Olmstead R, Domier CP, Cohen MS, Ernst M, London ED (2006) Working memory in cigarette smokers: comparison to non-smokers and effects of abstinence. Addict Behav 31:833–844

    PubMed  Google Scholar 

  5. Bashir S, Alghamd F, Alhussien A, Alohali M, Alatawi A, Almusned T, Habib SS (2017) Effect of smoking on cognitive functioning in young saudi adults. Med Sci Monit Basic Res 23:31–35

    PubMed  PubMed Central  Google Scholar 

  6. Hong JS, Kim SM, Jung HY, Kang KD, Min KJ, Han DH (2017) Cognitive avoidance and aversive cues related to tobacco in male smokers. Addict Behav 73:158–164

    PubMed  Google Scholar 

  7. Zhong G, Wang Y, Zhang Y, Guo JJ, Zhao Y (2015) Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS ONE 10:e0118333

    PubMed  PubMed Central  Google Scholar 

  8. Durazzo TC, Korecka M, Trojanowski JQ, Weiner MW, O’Hara R, Ashford JW, Shaw LM, Alzheimer’s Disease Neuroimaging Initiative (2016) Active cigarette smoking in cognitively-normal elders and probable alzheimer’s disease is associated with elevated cerebrospinal fluid oxidative stress biomarkers. J Alzheimers Dis 54:99–107

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Toda N, Okamura T (2016) Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: implications for Alzheimer’s disease. J Pharmacol Sci 131:223–232

    CAS  PubMed  Google Scholar 

  10. Levy DT, Yuan Z, Li Y (2017) The prevalence and characteristics of E-cigarette users in the U.S. Int J Environ Res Public Health 14:E1200. https://doi.org/10.3390/ijerph14101200

    Article  PubMed  Google Scholar 

  11. Bold KW, Kong G, Cavallo DA, Camenga DR, Krishnan-Sarin S (2017) E-cigarette susceptibility as a predictor of youth initiation of E-cigarettes. Nicotine Tob Res 20:140–144

    PubMed  Google Scholar 

  12. Sears CG, Hart JL, Walker KL, Robertson RM (2017) Generally recognized as safe: uncertainty surrounding E-cigarette flavoring safety. Int J Environ Res Public Health 14

  13. Rom O, Pecorelli A, Valacchi G, Reznick AZ (2015) Are E-cigarettes a safe and good alternative to cigarette smoking? Ann N Y Acad Sci 1340:65–74

    CAS  PubMed  Google Scholar 

  14. Simmons VN, Quinn GP, Harrell PT, Meltzer LR, Correa JB, Unrod M, Brandon TH (2016) E-cigarette use in adults: a qualitative study of users’ perceptions and future use intentions. Addict Res Theory 24:313–321

    PubMed  PubMed Central  Google Scholar 

  15. Hughes A, Hendrickson RG (2019) An epidemiologic and clinical description of e-cigarette toxicity. Clin Toxicol (Phila) 57:287–293

    CAS  Google Scholar 

  16. Bengalli R, Ferri E, Labra M, Mantecca P (2017) Lung toxicity of condensed aerosol from E-CIG liquids: influence of the flavor and the in vitro model used. Int J Environ Res Public Health 14

  17. Payne JD, Michaels D, Orellana-Barrios M, Nugent K (2017) Electronic cigarette toxicity. J Prim Care Community Health 8:100–102

    PubMed  Google Scholar 

  18. Sancilio S, Gallorini M, Cataldi A, Sancillo L, Rana RA, di Giacomo V (2017) Modifications in human oral fibroblast ultrastructure, collagen production, and lysosomal compartment in response to electronic cigarette fluids. J Periodontol 88:673–680

    CAS  PubMed  Google Scholar 

  19. Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, Webster MJ, Dang H, Herring LE, Sassano MF et al (2018) Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med 198:67–76

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Aug A, Altraja S, Kilk K, Porosk R, Soomets U, Altraja A (2015) E-cigarette affects the metabolome of primary normal human bronchial epithelial cells. PLoS ONE 10:e0142053

    PubMed  PubMed Central  Google Scholar 

  21. Lappas AS, Tzortzi AS, Konstantinidi EM, Teloniatis SI, Tzavara CK, Gennimata SA, Koulouris NG, Behrakis PK (2018) Short-term respiratory effects of e-cigarettes in healthy individuals and smokers with asthma. Respirology 23:291–297

    PubMed  Google Scholar 

  22. Clapp PW, Jaspers I (2017) Electronic cigarettes: their constituents and potential links to asthma. Curr Allergy Asthma Rep 17:79

    PubMed  PubMed Central  Google Scholar 

  23. Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim JH, Sudini K, Consolini N, Cormier SA, Lomnicki S, Hasan F et al (2015) Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS ONE 10

  24. Neal RE, Jagadapillai R, Chen J, Webb C, Stocke K, Greene RM, Pisano MM (2016) Developmental cigarette smoke exposure II: hippocampus proteome and metabolome profiles in adult offspring. Reprod Toxicol 65:436–447

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Quiroz-Padilla MF, Guillazo-Blanch G, Vale-Martínez A, Martí-Nicolovius M (2006) Excitotoxic lesions of the parafascicular nucleus produce deficits in a socially transmitted food preference. Neurobiol Learn Mem 86:256–263

    PubMed  Google Scholar 

  26. Cardiff RD, Miller CH, Munn RJ (2014) Manual immunohistochemistry staining of mouse tissues using the avidin-biotin complex (ABC) technique. Cold Spring Harb Protoc 2014:659–662

    PubMed  Google Scholar 

  27. Katotomichelakis M, Balatsouras D, Tripsianis G, Davris S, Maroudias N, Danielides V, Simopoulos C (2007) The effect of smoking on the olfactory function. Rhinology 45:273–280

    PubMed  Google Scholar 

  28. Onor IO, Stirling DL, Williams SR, Bediako D, Borghol A, Harris MB, Darensburg TB, Clay SD, Okpechi SC, Sarpong DF (2017) Clinical effects of cigarette smoking: epidemiologic impact and review of pharmacotherapy options. Int J Environ Res Public Health 14

  29. Glasser AM, Katz L, Pearson JL, Abudayyeh H, Niaura RS, Abrams DB, Villanti AC (2017) Overview of electronic nicotine delivery systems: a systematic review. Am J Prev Med 52:e33–e66

    PubMed  Google Scholar 

  30. Salamanca JC, Meehan-Atrash J, Vreeke S, Escobedo JO, Peyton DH, Strongin RM (2018) E-cigarettes can emit formaldehyde at high levels under conditions that have been reported to be non-averse to users. Sci Rep 8

  31. Jitnarin N, Kosulwat V, Rojroongwasinkul N, Boonpraderm A, Haddock CK, Poston WSC (2014) The relationship between smoking, body weight, body mass index, and dietary intake among Thai adults: results of the national Thai food consumption survey. Asia Pac J Public Health 26:481–493

    PubMed  Google Scholar 

  32. Audrain-McGovern J, Benowitz N (2011) Cigarette smoking, nicotine, and body weight. Clin Pharmacol Ther 90:164–168

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dare S, Mackay DF, Pell JP (2015) Relationship between smoking and obesity: a cross-sectional study of 499,504 middle-aged adults in the UK general population. PLoS ONE 10

  34. Aubin HJ, Farley A, Lycett D, Lahmek P, Aveyard P (2012) Weight gain in smokers after quitting cigarettes: meta-analysis. BMJ 345

  35. Mangubat M, Lutfy K, Lee ML, Pulido L, Stout D, Davis R, Shin C-S, Shahbazian M, Seasholtz S, Sinha-Hikim A et al (2012) Effect of nicotine on body composition in mice. J Endocrinol 212:317–326

    CAS  PubMed  Google Scholar 

  36. Kalmijn S, van Boxtel MPJ, Verschuren MWM, Jolles J, Launer LJ (2002) Cigarette smoking and alcohol consumption in relation to cognitive performance in middle age. Am J Epidemiol 156:936–944

    PubMed  Google Scholar 

  37. Starr JM, Deary IJ, Fox HC, Whalley LJ (2007) Smoking and cognitive change from age 11 to 66 years: a confirmatory investigation. Addict Behav 32:63–68

    PubMed  Google Scholar 

  38. Omotoso GO, Babalola FA (2014) Histological changes in the cerebelli of adult wistar rats exposed to cigarette smoke. Niger J Physiol Sci 29:43–46

    CAS  PubMed  Google Scholar 

  39. Jacobus J, Squeglia LM, Sorg SF, Nguyen-Louie TT, Tapert SF (2014) Cortical thickness and neurocognition in adolescent marijuana and alcohol users following 28 days of monitored abstinence. J Stud Alcohol Drugs 75:729–743

    PubMed  PubMed Central  Google Scholar 

  40. Bryant VE, Kahler CW, Devlin KN, Monti PM, Cohen RA (2013) The effects of cigarette smoking on learning and memory performance among people living with HIV/AIDS. AIDS Care 25:1308–1316

    PubMed  PubMed Central  Google Scholar 

  41. Liu J-T, Lee I-H, Wang C-H, Chen K-C, Lee C-I, Yang Y-K (2013) Cigarette smoking might impair memory and sleep quality. J Formos Med Assoc 112:287–290

    PubMed  Google Scholar 

  42. Sartori AC, Vance DE, Slater LZ, Crowe M (2012) The impact of inflammation on cognitive function in older adults: implications for health care practice and research. J Neurosci Nurs 44:206–217

    PubMed  PubMed Central  Google Scholar 

  43. Zhang L, Spencer TJ, Biederman J, Bhide PG (2018) Attention and working memory deficits in a perinatal nicotine exposure mouse model. PLoS ONE 13:e0198064

    PubMed  PubMed Central  Google Scholar 

  44. Kukull WA (2001) The association between smoking and Alzheimer’s disease: effects of study design and bias. Biol Psychiat 49:194–199

    CAS  PubMed  Google Scholar 

  45. Corley J, Gow AJ, Starr JM, Deary IJ (2012) Smoking, childhood IQ, and cognitive function in old age. J Psychosom Res 73:132–138

    PubMed  Google Scholar 

  46. Ponzoni L, Moretti M, Sala M, Fasoli F, Mucchietto V, Lucini V, Cannazza G, Gallesi G, Castellana CN, Clementi F, Zoli M, Gotti C, Braida D (2015) Different physiological and behavioural effects of e-cigarette vapour and cigarette smoke in mice. Eur Neuropsychopharmacol 25:1775–1786

    CAS  PubMed  Google Scholar 

  47. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218

    PubMed  PubMed Central  Google Scholar 

  48. Peila R, Launer LJ (2006) Inflammation and dementia: epidemiologic evidence. Acta Neurol Scand Suppl 185:102–106

    CAS  PubMed  Google Scholar 

  49. Hart J (2002) Inflammation. 1: its role in the healing of acute wounds. J Wound Care 11:205–209

    CAS  PubMed  Google Scholar 

  50. Wilson CB, McLaughlin LD, Nair A, Ebenezer PJ, Dange R, Francis J (2013) Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS ONE 8:e76146

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rock KL, Kono H (2008) The inflammatory response to cell death. Annu Rev Pathol 3:99–126

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Y, Jiang G, Zhang P, Fan J (2015) Programmed cell death and its role in inflammation. Mil Med Res 2

  53. Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV (2016) Cytoplasmic vacuolization in cell death and survival. Oncotarget 7:55863–55889

    PubMed  PubMed Central  Google Scholar 

  54. Petrescu F, Voican SC, Silosi I (2010) Tumor necrosis factor-α serum levels in healthy smokers and nonsmokers. Int J Chron Obstruct Pulmon Dis 5:217–222

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tanni SE, Pelegrino NR, Angeleli AY, Correa C, Godoy I (2010) Smoking status and tumor necrosis factor-alpha mediated systemic inflammation in COPD patients. J Inflamm (Lond) 7:29

    Google Scholar 

  56. Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer L, Kuller L, Rubin S, Harris T (2003) Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 61:76–80

    CAS  PubMed  Google Scholar 

  57. Abramson JL, Vaccarino V (2002) Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med 162:1286–1292

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an Indonesian Ministry of Research, Technology, and Higher Education grant in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Prasedya.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasedya, E.S., Ambana, Y., Martyasari, N.W.R. et al. Short-term E-cigarette toxicity effects on brain cognitive memory functions and inflammatory responses in mice. Toxicol Res. 36, 267–273 (2020). https://doi.org/10.1007/s43188-019-00031-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-019-00031-3

Keywords

Navigation