Skip to main content
Log in

Immunohistochemistry of Leukemia Inhibitory Factor and Integrin αVβ3 in Mouse Endometrium Following Kisspeptin-54 Ovulation Trigger

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Kisspeptin (KP) is a group of hypothalamic neuropeptides encoded by KISS-1 gene. KP-54, a 54-amino-acid peptide, helps regulate the hypothalamic-pituitary-ovarian axis and plays a potential role in implantation. C57BL/6 J female mice were superovulated via intraperitoneal injection of 5 International Units (IU) pregnant mare serum gonadotrophin (day 1). Forty-eight hours later, mice (5/group) were injected with phosphate-buffered saline (PBS) (group A), 5 IU human chorionic gonadotrophin (hCG) (group B), or 3 nmol KP-54 (group C). On day 7, mice were euthanized and uteri excised to create paraformaldehyde-fixed paraffin-embedded sections that were immunostained for the implantation markers: leukemia inhibitory factor (LIF) and integrin αVβ3 (ITG αVβ3). Slides were scored for intensity of staining in endometrial glandular epithelium (GE) and stromal cells (SCs) via histoscore (H-score). Data were analyzed using the Kruskal–Wallis test followed by the Mann–Whitney U test for pairwise comparisons. LIF expression was significantly higher in GE and SCs of mice triggered with KP-54 compared to placebo (P = .009 for both), but only higher than hCG trigger group in SCs (P = .009). Meanwhile, ITG αVβ3 expression was significantly higher in SCs of mice triggered with KP-54 compared to placebo (P = .028). In conclusion, using KP-54 as an ovulation trigger resulted in higher expression of the implantation markers LIF and ITG αVβ3 in mice endometrium compared to hCG or placebo. This suggests a potential role for KP-54 trigger in improving embryo implantation in clinical IVF. However, further studies are needed to correlate these results with clinical implantation rates and pregnancy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author.

The research ethics board at the University of British Columbia approved laboratory animal care and use (#A16-0295).

References

  1. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28(1):14–38. https://doi.org/10.1016/j.rbmo.2013.08.011.

    Article  CAS  PubMed  Google Scholar 

  2. Bentin-Ley U, Horn T, Sjogren A, Sorensen S, Larsen JF, Hamberger L. Ultrastructure of human blastocyst-endometrial interactions in vitro. J Reprod Fertil. 2000;120(2):337–50.

    Article  CAS  PubMed  Google Scholar 

  3. Ochoa-Bernal MA, Fazleabas AT. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int J Mol Sci. 2020;21(6):1973. https://doi.org/10.3390/ijms21061973

  4. Coulam CB, Chapman C, Rinehart JS. What is a preclinical pregnancy loss? J Assist Reprod Genet. 1998;15(4):184–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7. https://doi.org/10.1038/35079135.

    Article  CAS  PubMed  Google Scholar 

  6. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485–500. https://doi.org/10.1093/humupd/dmu009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang P, Tang M, Zhong T, Lin Y, Zong T, Zhong C, et al. Expression and function of kisspeptin during mouse decidualization. PLoS One. 2014;9(5):e97647. https://doi.org/10.1371/journal.pone.0097647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol. 2018;238(3):R173–83. https://doi.org/10.1530/joe-18-0108.

    Article  CAS  PubMed  Google Scholar 

  9. Owen CM, Zhou X, Bernard DJ, Jaffe LA. Kisspeptin-54 injection induces a physiological luteinizing hormone surge and ovulation in mice. Biol Reprod. 2021;104(6):1181–3. https://doi.org/10.1093/biolre/ioab067.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cejudo Roman A, Pinto FM, Dorta I, Almeida TA, Hernandez M, Illanes M, et al. Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil Steril. 2012;97(5):1213–9. https://doi.org/10.1016/j.fertnstert.2012.02.021.

    Article  CAS  PubMed  Google Scholar 

  11. Jamil Z, Fatima SS, Arif S, Alam F, Rehman R. Kisspeptin and embryo implantation after ICSI. Reprod Biomed Online. 2017;34(2):147–53. https://doi.org/10.1016/j.rbmo.2016.11.004.

    Article  CAS  PubMed  Google Scholar 

  12. Mumtaz A, Khalid A, Jamil Z, Fatima SS, Arif S, Rehman R. Kisspeptin: a potential factor for unexplained infertility and impaired embryo implantation. Int J Fertil Steril. 2017;11(2):99–104. https://doi.org/10.22074/ijfs.2017.4957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fayazi M, Calder M, Bhattacharya M, Vilos GA, Power S, Babwah AV. The pregnant mouse uterus exhibits a functional kisspeptin/KISS1R signaling system on the day of embryo implantation. Reprod Biol Endocrinol. 2015;13(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Calder M, Chan YM, Raj R, Pampillo M, Elbert A, Noonan M, et al. Implantation failure in female Kiss1-/- mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor. Endocrinology. 2014;155(8):3065–78. https://doi.org/10.1210/en.2013-1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salleh N, Giribabu N. Leukemia inhibitory factor: roles in embryo implantation and in nonhormonal contraception. ScientificWorldJournal. 2014;2014:201514. https://doi.org/10.1155/2014/201514.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu M, Yin Y, Zhao M, Hu L, Chen Q. The low expression of leukemia inhibitory factor in endometrium: possible relevant to unexplained infertility with multiple implantation failures. Cytokine. 2013;62(2):334–9. https://doi.org/10.1016/j.cyto.2013.03.002.

    Article  CAS  PubMed  Google Scholar 

  17. Shuya LL, Menkhorst EM, Yap J, Li P, Lane N, Dimitriadis E. Leukemia inhibitory factor enhances endometrial stromal cell decidualization in humans and mice. PLoS One. 2011;6(9):e25288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kelleher AM, Milano-Foster J, Behura SK, Spencer TE. Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nat Commun. 2018;9(1):2435.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pawar S, Bagchi MK, Bagchi IC, Laws MJ. Uterine epithelial estrogen receptor-α controls decidualization via a paracrine mechanism. Mol Endocrinol. 2015;29(9):1362–74. https://doi.org/10.1210/me.2015-1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen JR, Cheng J-G, Hernandez L, Stewart CL, Sewell L, Shatzer T. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis*. Endocrinology. 2000;141(12):4365–72. https://doi.org/10.1210/endo.141.12.7855.

    Article  CAS  PubMed  Google Scholar 

  21. Hewitt SC, Goulding EH, Eddy EM, Korach KS. Studies using the estrogen receptor α knockout uterus demonstrate that implantation but not decidualization-associated signaling is estrogen dependent. Biol Reprod. 2002;67(4):1268–77. https://doi.org/10.1095/biolreprod67.4.1268.

    Article  CAS  Google Scholar 

  22. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the alpha(v)beta(3) integrin adversely affects implantation in the mouse. Biol Reprod. 2000;62(5):1285–90. https://doi.org/10.1095/biolreprod62.5.1285.

    Article  CAS  PubMed  Google Scholar 

  23. Aplin JD, Spanswick C, Behzad F, Kimber SJ, Vićovac L. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium. Mol Hum Reprod. 1996;2(7):527–34. https://doi.org/10.1093/molehr/2.7.527.

    Article  CAS  PubMed  Google Scholar 

  24. Nardo LG, Nikas G, Makrigiannakis A, Sinatra F, Nardo F. Synchronous expression of pinopodes and alpha v beta 3 and alpha 4 beta 1 integrins in the endometrial surface epithelium of normally menstruating women during the implantation window. J Reprod Med. 2003;48(5):355–61.

    CAS  PubMed  Google Scholar 

  25. Illera MJ, Juan L, Stewart CL, Cullinan E, Ruman J, Lessey BA. Effect of peritoneal fluid from women with endometriosis on implantation in the mouse model. Fertil Steril. 2000;74(1):41–8. https://doi.org/10.1016/s0015-0282(00)00552-5.

    Article  CAS  PubMed  Google Scholar 

  26. Abbara A, Jayasena CN, Christopoulos G, Narayanaswamy S, Izzi-Engbeaya C, Nijher GM, et al. Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. J Clin Endocrinol Metab. 2015;100(9):3322–31. https://doi.org/10.1210/jc.2015-2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31. https://doi.org/10.4103/0976-0105.177703.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nagy A. Manipulating the mouse embryo: a laboratory manual. 3rd ed. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 2003.

  29. Lamas S, Carvalheira J, Gartner F, Amorim I. C57BL/6J mouse superovulation: schedule and age optimization to increase oocyte yield and reduce animal use. Zygote. 2021;29(3):199–203. https://doi.org/10.1017/S0967199420000714.

    Article  CAS  PubMed  Google Scholar 

  30. Fayazi M, Calder M, Bhattacharya M, Vilos GA, Power S, Babwah AV. The pregnant mouse uterus exhibits a functional kisspeptin/KISS1R signaling system on the day of embryo implantation. Reprod Biol Endocrinol. 2015;13:105. https://doi.org/10.1186/s12958-015-0105-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng B, Zhu H, Leung PC. Gonadotropin-releasing hormone regulates human trophoblastic cell invasion via TWIST-induced N-cadherin expression. J Clin Endocrinol Metab. 2015;100(1):E19-29. https://doi.org/10.1210/jc.2014-1897.

    Article  CAS  PubMed  Google Scholar 

  32. Browne H, Taylor H. HOXA10 expression in ectopic endometrial tissue. Fertil Steril. 2006;85(5):1386–90. https://doi.org/10.1016/j.fertnstert.2005.10.072.

    Article  CAS  PubMed  Google Scholar 

  33. Abdelkareem AO, Gebril SM, AbdelHafez FF, Terry J, Bedaiwy MA. Kisspeptin and kisspeptin receptor immunoreactivity in euploid and aneuploid choriodecidual tissues of recurrent pregnancy losses. F S Sci. 2023;4(1):56–64. https://doi.org/10.1016/j.xfss.2022.10.002.

    Article  PubMed  Google Scholar 

  34. Sharpe-Timms KL, Ricke EA, Piva M, Horowitz GM. Differential expression and localization of de-novo synthesized endometriotic haptoglobin in endometrium and endometriotic lesions. Hum Reprod (Oxford, England). 2000;15(10):2180–5.

    Article  CAS  Google Scholar 

  35. Torlakovic EE, Riddell R, Banerjee D, El-Zimaity H, Pilavdzic D, Dawe P, et al. Canadian Association of Pathologists-Association canadienne des pathologistes National Standards Committee/Immunohistochemistry: best practice recommendations for standardization of immunohistochemistry tests. Am J Clin Pathol. 2010;133(3):354–65. https://doi.org/10.1309/ajcpdyz1xmf4hjwk.

    Article  PubMed  Google Scholar 

  36. Spencer T. Biological roles of uterine glands in pregnancy. Semin Reprod Med. 2014;32(05):346–57. https://doi.org/10.1055/s-0034-1376354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. Int J Dev Biol. 2014;58(2–3–4):139–46. https://doi.org/10.1387/ijdb.130348mb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pawar S. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol (Baltimore, Md). 2013;27(12):1996–2012. https://doi.org/10.1210/me.2013-1206.

    Article  CAS  Google Scholar 

  39. Song H, Lim H. Evidence for heterodimeric association of leukemia inhibitory factor (LIF) receptor and gp130 in the mouse uterus for LIF signaling during blastocyst implantation. Reproduction. 2006;131(2):341–9. https://doi.org/10.1530/rep.1.00956.

    Article  CAS  PubMed  Google Scholar 

  40. Ma W-G, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci. 2003;100(5):2963–8. https://doi.org/10.1073/pnas.0530162100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor J, Pampillo M, Bhattacharya M, Babwah AV. Kisspeptin/KISS1R signaling potentiates extravillous trophoblast adhesion to type-I collagen in a PKC- and ERK1/2-dependent manner. Mol Reprod Dev. 2014;81(1):42–54. https://doi.org/10.1002/mrd.22279.

    Article  CAS  PubMed  Google Scholar 

  42. Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, et al. Molecular cues to implantation. Endocr Rev. 2004;25(3):341–73. https://doi.org/10.1210/er.2003-0020.

    Article  CAS  PubMed  Google Scholar 

  43. McEwan M, Lins RJ, Munro SK, Vincent ZL, Ponnampalam AP, Mitchell MD. Cytokine regulation during the formation of the fetal-maternal interface: focus on cell-cell adhesion and remodelling of the extra-cellular matrix. Cytokine Growth Factor Rev. 2009;20(3):241–9. https://doi.org/10.1016/j.cytogfr.2009.05.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Department of Obstetrics & Gynaecology at the University of British Columbia financially supported this study.

Author information

Authors and Affiliations

Authors

Contributions

A.S. Ait-Allah and M.A. Bedaiwy were involved in idea conceptualization. A.O. Abdelkareem, A.S. Ait-Allah, S.M. Rasheed, Y.A. Helmy, and M.A. Bedaiwy were involved in study design. A.O. Abdelkareem was involved in animal experiments, immunohistochemistry, and data analysis. M.S. Iews was involved in animal experiments. A.O. Abdelkareem and R. Habte were involved in manuscript writing. R. Habte, F.F. Abdelhafez, and M.A. Bedaiwy were involved in manuscript critical revision and submission.

Corresponding author

Correspondence to Mohamed A. Bedaiwy.

Ethics declarations

Conflict of Interest

Dr. Bedaiwy has received grants from the Canadian Institutes of Health Research & Ferring Pharmaceuticals. He is also on the advisory boards of AbbVie and Baxter. All other authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkareem, A.O., Iews, M.S., Ait-Allah, A.S. et al. Immunohistochemistry of Leukemia Inhibitory Factor and Integrin αVβ3 in Mouse Endometrium Following Kisspeptin-54 Ovulation Trigger. Reprod. Sci. 30, 3084–3091 (2023). https://doi.org/10.1007/s43032-023-01243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01243-7

Keywords

Navigation