Skip to main content

Advertisement

Log in

Leydig Cell–Specific DAX1-Deleted Mice Has Higher Testosterone Level in the Testis During Pubertal Development

  • Reproductive Biology.: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Testosterone, the male sex hormone, is necessary for the development and function of the male reproductive system. Biosynthesis of testosterone in mammals mainly occurs in testicular Leydig cells. Many proteins such as P450c17, 3β-HSD, and StAR are involved in testicular steroidogenesis. DAX1 is essential for sex development and interacts with nuclear receptors such as steroidogenic factor 1 to inhibit steroidogenesis. In this study, we investigated the role of DAX1 in testicular steroidogenesis in vivo by generating Leydig cell-specific DAX1-knockout mice. Radioimmunoassay revealed that the levels of testosterone and progesterone were higher in Leydig cell-specific DAX1-knockout testes than in the testes from wild-type mice during the first 3–4 weeks of aging. In addition, the expression levels of steroidogenic genes, such as StAR, P450c17, P450scc, and 3β-HSD, were considerably higher in the testes from DAX1-knockout mice. DAX1-deficient mouse testes seemed to attain early puberty with the acceleration of germ cell development. These data suggest that DAX1 regulates the expression of steroidogenic genes, and thereby controls and fine-tunes steroidogenesis during testis development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable

Code Availability

Prism software (Prism 5; GraphPad software, San Diego, CA, USA)

References

  1. Franchimont P. Regulation of gonadal androgen secretion. Horm Res. 1983;18(1-3):7–17. https://doi.org/10.1159/000179774.

    Article  CAS  PubMed  Google Scholar 

  2. Stocco DM, Clark BJ. The role of the steroidogenic acute regulatory protein in steroidogenesis. Steroids. 1997;62(1):29–36.

    Article  CAS  Google Scholar 

  3. Payne AH, Youngblood GL. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod. 1995;52(2):217–25. https://doi.org/10.1095/biolreprod52.2.217.

    Article  CAS  PubMed  Google Scholar 

  4. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25(6):947–70. https://doi.org/10.1210/er.2003-0030.

    Article  CAS  PubMed  Google Scholar 

  5. Martin LJ, Tremblay JJ. Nuclear receptors in Leydig cell gene expression and function. Biol Reprod. 2010;83(1):3–14. https://doi.org/10.1095/biolreprod.110.083824.

    Article  CAS  PubMed  Google Scholar 

  6. Chanda D, Park J-H, Choi H-S. Molecular basis of endocrine regulation by orphan nuclear receptor small heterodimer partner. Endocr J. 2008;55(2):253–68. https://doi.org/10.1507/endocrj.K07E-103.

    Article  CAS  PubMed  Google Scholar 

  7. Iyer AK, McCabe ER. Molecular mechanisms of DAX1 action. Mol Genet Metab. 2004;83(1-2):60–73. https://doi.org/10.1016/j.ymgme.2004.07.018.

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda Y, Takeda Y, Shikayama T, Mukai T, Hisano S, Morohashi KI. Comparative localization of Dax-1 and Ad4BP/SF-1 during development of the hypothalamic-pituitary-gonadal axis suggests their closely related and distinct functions. Dev Dyn. 2001;220(4):363–76. https://doi.org/10.1002/dvdy.1116.

    Article  CAS  PubMed  Google Scholar 

  9. Volle DH, Duggavathi R, Magnier BC, Houten SM, Cummins CL, Lobaccaro JM, et al. The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Genes Dev. 2007;21(3):303–15. https://doi.org/10.1101/gad.409307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo W, Burris TP, McCabe ER. Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis. Biochem Mol Med. 1995;56(1):8–13. https://doi.org/10.1006/bmme.1995.1049.

    Article  CAS  PubMed  Google Scholar 

  11. Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet. 1996;12(4):404–9. https://doi.org/10.1038/ng0496-404.

    Article  CAS  PubMed  Google Scholar 

  12. Ludbrook LM, Harley VR. Sex determination: a 'window' of DAX1 activity. Trends Endocrinol Metab. 2004;15(3):116–21. https://doi.org/10.1016/j.tem.2004.02.002.

    Article  CAS  PubMed  Google Scholar 

  13. Ikeda Y, Swain A, Weber TJ, Hentges KE, Zanaria E, Lalli E, et al. Steroidogenic factor 1 and Dax-1 colocalize in multiple cell lineages: potential links in endocrine development. Mol Endocrinol. 1996;10(10):1261–72. https://doi.org/10.1210/mend.10.10.9121493.

    Article  CAS  PubMed  Google Scholar 

  14. Babu PS, Bavers DL, Beuschlein F, Shah S, Jeffs B, Jameson JL, et al. Interaction between Dax-1 and steroidogenic factor-1 in vivo: increased adrenal responsiveness to ACTH in the absence of Dax-1. Endocrinology. 2002;143(2):665–73. https://doi.org/10.1210/endo.143.2.8658.

    Article  CAS  PubMed  Google Scholar 

  15. Hoyle C, Narvaez V, Alldus G, Lovell-Badge R, Swain A. Dax1 Expression is dependent on steroidogenic factor 1 in the developing gonad. Mol Endocrinol. 2002;16(4):747–56. https://doi.org/10.1210/mend.16.4.0802.

    Article  CAS  PubMed  Google Scholar 

  16. Lalli E, Sassone-Corsi P. DAX-1, an unusual orphan receptor at the crossroads of steroidogenic function and sexual differentiation. Mol Endocrinol. 2003;17(8):1445–53. https://doi.org/10.1210/me.2003-0159.

    Article  CAS  PubMed  Google Scholar 

  17. Holter E, Kotaja N, Mäkela S, Strauss L, Kietz S, Jänne OA, et al. Inhibition of androgen receptor (AR) function by the reproductive orphan nuclear receptor DAX-1. Mol Endocrinol. 2002;16(3):515–28. https://doi.org/10.1210/mend.16.3.0804.

    Article  CAS  PubMed  Google Scholar 

  18. Agoulnik IU, Krause WC, Bingman WE 3rd, Rahman HT, Amrikachi M, Ayala GE, et al. Repressors of androgen and progesterone receptor action. J Biol Chem. 2003;278(33):31136–48. https://doi.org/10.1074/jbc.M305153200.

    Article  CAS  PubMed  Google Scholar 

  19. Lalli E, Ohe K, Hindelang C, Sassone-Corsi P. Orphan receptor DAX-1 is a shuttling RNA binding protein associated with polyribosomes via mRNA. Mol Cell Biol. 2000;20(13):4910–21. https://doi.org/10.1128/mcb.20.13.4910-4921.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Liu G, Ruan Y, Wang J, Zhao K, Wan Y, et al. Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nat Commun. 2014;5:5042. https://doi.org/10.1038/ncomms6042.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SY, Park E, Kim SC, Ahn RS, Ko C, Lee K. ERalpha/E2 signaling suppresses the expression of steroidogenic enzyme genes via cross-talk with orphan nuclear receptor Nur77 in the testes. Mol Cell Endocrinol. 2012;362(1-2):91–103. https://doi.org/10.1016/j.mce.2012.05.015.

    Article  CAS  PubMed  Google Scholar 

  22. Suh JH, Gong EY, Hong CY, Park E, Ahn RS, Park KS, et al. Reduced testicular steroidogenesis in tumor necrosis factor-alpha knockout mice. J Steroid Biochem Mol Biol. 2008;112(1-3):117–21. https://doi.org/10.1016/j.jsbmb.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  23. Ahmed EA, de Rooij DG. Staging of mouse seminiferous tubule cross-sections. Methods Mol Biol. 2009;558:263–77. https://doi.org/10.1007/978-1-60761-103-5_16.

    Article  PubMed  Google Scholar 

  24. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and Histopathological evaluation of the testis. 1st ed: Cache River Press; 1990.

  25. Defalco T, Saraswathula A, Briot A, Iruela-Arispe ML, Capel B. Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod. 2013;88(4):91. https://doi.org/10.1095/biolreprod.112.106138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids. 2015;103:3–10. https://doi.org/10.1016/j.steroids.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  27. Muscatelli F, Strom TM, Walker AP, Zanaria E, Récan D, Meindl A, et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. 1994;372(6507):672–6. https://doi.org/10.1038/372672a0.

    Article  CAS  PubMed  Google Scholar 

  28. Tabarin A. Congenital adrenal hypoplasia and DAX-1 gene mutations. Ann Endocrinol. 2001;62(2):202–6.

    CAS  Google Scholar 

  29. Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet. 1994;7(4):497–501. https://doi.org/10.1038/ng0894-497.

    Article  CAS  PubMed  Google Scholar 

  30. Meeks JJ, Crawford SE, Russell TA, Morohashi K, Weiss J, Jameson JL. Dax1 regulates testis cord organization during gonadal differentiation. Development. 2003;130(5):1029–36. https://doi.org/10.1242/dev.00316.

    Article  CAS  PubMed  Google Scholar 

  31. Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL. Role of Ahch in gonadal development and gametogenesis. Nat Genet. 1998;20(4):353–7. https://doi.org/10.1038/3822.

    Article  CAS  PubMed  Google Scholar 

  32. Wang ZJ, Jeffs B, Ito M, Achermann JC, Yu RN, Hales DB, et al. Aromatase (Cyp19) expression is up-regulated by targeted disruption of Dax1. Proc Natl Acad Sci. 2001;98(14):7988–93. https://doi.org/10.1073/pnas.141543298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lalli E, Melner MH, Stocco DM, Sassone-Corsi P. DAX-1 blocks steroid production at multiple levels. Endocrinology. 1998;139(10):4237–43. https://doi.org/10.1210/endo.139.10.6217.

    Article  CAS  PubMed  Google Scholar 

  34. Zazopoulos E, Lalli E, Stocco DM, Sassone-Corsi P. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis. Nature. 1997;390(6657):311–5. https://doi.org/10.1038/36899.

    Article  CAS  PubMed  Google Scholar 

  35. Song KH, Park YY, Park KC, Hong CY, Park JH, Shong M, et al. The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Mol Endocrinol. 2004;18(8):1929–40. https://doi.org/10.1210/me.2004-0043.

    Article  CAS  PubMed  Google Scholar 

  36. McGee SR, Narayan P. Precocious puberty and Leydig cell hyperplasia in male mice with a gain of function mutation in the LH receptor gene. Endocrinology. 2013;154(10):3900–13. https://doi.org/10.1210/en.2012-2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Themmen AP. An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Reproduction. 2005;130(3):263–74. https://doi.org/10.1530/rep.1.00663.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2017R1A2B4006166 and NRF-2020R1A2C1006705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keesook Lee.

Ethics declarations

Ethics Approval

All the animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Chonnam National University (Permit Number: 2012-44).

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 14 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kim, H.J., Lee, CH. et al. Leydig Cell–Specific DAX1-Deleted Mice Has Higher Testosterone Level in the Testis During Pubertal Development. Reprod. Sci. 29, 955–962 (2022). https://doi.org/10.1007/s43032-021-00554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00554-x

Keywords

Navigation