Skip to main content

Advertisement

Log in

Progesterone Increases Mitochondria Membrane Potential in Non-human Primate Oocytes and Embryos

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Mitochondrial activity is critical and correlates with embryo development. The identification of a novel human mitochondrial progesterone receptor (PR-M) that increases cellular respiration brings into question a role for progesterone in oocyte and preimplantation embryo development. Oocytes and embryos were generated from three Rhesus non-human primates (Macaca mulatta) undergoing in vitro fertilization. Immunohistochemical (IHC) staining for the progesterone receptor and mitochondria, RT-PCR with product sequencing for a mitochondrial progesterone receptor, and mitochondrial membrane determination with JC-1 staining were performed. IHC staining with selective antibodies to the progesterone receptor showed non-nuclear staining. Staining was absent in mouse control embryos. RT-PCR with product sequencing demonstrated PR-M transcript in Rhesus oocytes and embryos, which was absent in mouse embryos. Treatment of Rhesus oocytes and embryos with progesterone showed increased mitochondrial membrane potential, which was absent in mouse embryos. Our results support that progesterone increases mitochondrial membrane potential in oocytes and developing embryos. This is likely an in vivo mechanism to support preimplantation embryo development, and brings up the possibility of in vitro manipulation of culture media for optimization of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wetendorf M, DeMayo FJ. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol Cell Endocrinol. 2012;357:108–18.

    Article  CAS  Google Scholar 

  2. Lydon J, DeMayo F, Funk C, Mani SK, Hughes AR, Montgomery CA Jr, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9:2266–78.

    Article  CAS  Google Scholar 

  3. Shimada M, Yamashita Y, Ito J, Okazaki T, Kawahata K, Nishibori M. Expression of two progesterone receptor isoforms in cumulus cells and their roles during meiotic resumption of porcine oocytes. J Mol Endocrinol. 2004;33:209–25.

    Article  CAS  Google Scholar 

  4. Peluso JJ, Romak J, Liu X. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology. 2008;149:534–43.

    Article  CAS  Google Scholar 

  5. Terzaghi L, Luciano AM, Dall’Acqua PC, Modina SC, Peluso JJ, Lodde V. PGRMC1 localization and putative function in the nucleolus of bovine granulosa cells and oocytes. Reproduction. 2018;155:273–82.

    Article  CAS  Google Scholar 

  6. Saner K, Welter B, Zhang F, Hansen E, Dupont B, Wei Y, et al. Cloning and expression of a novel, truncated progesterone receptor. Mol Cell Endocrinol. 2003;200:155–63.

    Article  CAS  Google Scholar 

  7. Dai Q, Shah AA, Garde RV, Yonish BA, Zhang L, Medvitz NA, et al. A truncated progesterone receptor (PR-M) localizes to the mitochondrion and controls cellular respiration. Mol Endocrinol. 2013;27:741–53.

    Article  CAS  Google Scholar 

  8. Dai Q, Likes C, Luz A, et al. A mitochondrial progesterone receptor increase cardia beta-oxidation and remodeling. J Endocrine Soc. 2019;3(2):446–67.

    Article  CAS  Google Scholar 

  9. Tantibhedhyangkul J, Hawkins KC, Dai Q, Mu K, Dunn CN, Miller SE, et al. Expression of a mitochondrial progesterone receptor in human spermatozoa correlates with a progestin-dependent increase in mitochondrial membrane potential. Andrology. 2014;2(6):875–83.

    Article  CAS  Google Scholar 

  10. Feng Q, Crochet JR, Dai Q, Leppert PC, Price TM. Expression of a mitochondrial progesterone receptor (PR-M) in leiomyomata and association with increased mitochondrial membrane potential. J Clin Endocrinol Metab. 2014;99:E390–9.

    Article  CAS  Google Scholar 

  11. Meyers S, Li M, Enders A, Overstreet J. Rhesus macaque blastocysts resulting from intracytoplasmic sperm injection of vacuum-dried spermatozoa. J Med Primatol. 2009;38:310–7.

    Article  Google Scholar 

  12. Press M, Spaulding B, Groshen S, Kaminsky D, Hagerty M, Sherman L, et al. Comparison of different antibodies for detection of progesterone receptor in breast cancer. Steroids. 2002;67:799–813.

    Article  CAS  Google Scholar 

  13. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB. [29] Mitochondrial membrane potential monitored by JC-1 dye. In: GM Attardi (ed) Methods Enzymology, (vol: 260, pp. 406-17). Cambridge, Massachusetts, Academic Press.

  14. Behera MA, Dai Q, Garde R, Saner C, Jungheim E, Price TM. Progesterone stimulates mitochondrial activity with subsequent inhibition of apoptosis in MCF-10A benign breast epithelial cells. Am J Physiol Endocrinol Metab. 2009;297:E1089–E96.

    Article  CAS  Google Scholar 

  15. Petralia RS, Wang Y-X, Wenthold RJ. Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. J Comp Neurol. 1994;349:85–110.

  16. Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biology, (pp. 21-49).Cambridge, Massachusetts, Academic Press.

  17. Hou Q, Gorski J. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development. Proc Natl Acad Sci U S A. 1993;90:9460–4.

  18. Ying C, Yang Y-C, Hong W-F, Cheng W, Hsu W-L. Progesterone receptor gene expression in preimplantation pig embryos. Europ J Endocrinol. 2000;143:697–703.

    Article  CAS  Google Scholar 

  19. Ahn K, Huh J-W, Park S-J, et al. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol. 2008;9:78.

  20. Cossarizza A, Ceccarelli D, Masini A. Functional heterogeneity of an isolated mitochondrial population revealed by cytofluorometric analysis at the single organelle level. Exp Cell Res. 1996;222:84–94.

    Article  CAS  Google Scholar 

  21. Mathur A, Hong Y, Kemp B, Barrientos A, Erusalimsky J. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46:126–38.

    Article  CAS  Google Scholar 

  22. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death. Eur J Biochem. 1999;264:687–701.

    Article  CAS  Google Scholar 

  23. Duchen MR, Surin A, Jacobson J. Imaging mitochondrial function in intact cells. Methods Enzymol. 2003;361:353–89.

    Article  CAS  Google Scholar 

  24. Zorov D, Juhaszova M, Sollott S. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006;1757:509–17.

    Article  CAS  Google Scholar 

  25. Liu Y, Han M, Li X, Wang H, Ma M, Zhang S, et al. Age-related changes in the mitochondria of human mural granulosa cells. Hum Reprod. 2017;32:2465–73.

    Article  CAS  Google Scholar 

  26. Reynier P, May-Panloup P, Chrétien MF, Morgan CJ, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. MHR: Basic Sci Reprod Med. 2001;7:425–9.

    CAS  Google Scholar 

  27. Duran HE, Simsek-Duran F, Oehninger SC, Jones HW, Castora FJ. The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertil Steril. 2011;96:384–8.

    Article  CAS  Google Scholar 

  28. Van Blerkom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod. 2000;15:2621–33.

    Article  Google Scholar 

  29. Fragouli E, Spath K, Alfarawati S, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:e1005241.

    Article  Google Scholar 

  30. Victor AR, Brake AJ, Tyndall JC, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2017;107:34–42.e3.

    Article  CAS  Google Scholar 

  31. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.

    Article  Google Scholar 

  32. Hardy K, Hooper M, Handyside A, Rutherford A, Winston R, Leese H. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4:188–91.

    Article  CAS  Google Scholar 

  33. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. MHR: Basic Sci Reprod Med. 2008;14:667–72.

    CAS  Google Scholar 

  34. Collado-Fernandez E, Picton H, Dumollard R. Metabolism throughout follicle and oocyte development in mammals. Int J Dev Biol. 2012;56:799–808.

    Article  CAS  Google Scholar 

  35. Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev. 2009;76:844–53.

    Article  CAS  Google Scholar 

  36. Dunning K, Cashman K, Russell D, Thompson J, Norman R, Robker R. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83:909–18.

    Article  CAS  Google Scholar 

  37. Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ. Fatty acid composition of fertilization-failed human oocytes. Hum Reprod. 1998;13:2227–30.

    Article  CAS  Google Scholar 

  38. Leese H, Conaghan J, Martin K, Hardy K. Early human embryo metabolism. BioEssays. 1993;15:259–64.

    Article  CAS  Google Scholar 

  39. Sturmey R, Leese H. Energy metabolism in pig oocytes and early embryos. Reprod. 2003;126:197–204.

    Article  CAS  Google Scholar 

  40. McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro *. J Clin Endocrinol Metab. 1979;49:851–60.

    Article  CAS  Google Scholar 

  41. Maathuis J, Van Look P, Michie E. Changes in volume, total protein,and ovarian steroid concentrations of peritoneal fluid throughout the human menstrual cycle. J Endocrinol. 1978;76:123–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Catherine VandeVoort, PhD, from the UC Davis California National Primate Research Center for providing cryopreserved Rhesus semen.

Funding

The Foundation of Assessment and Enhancement of Embryonic Competence, the Susan Fiery Hughes Memorial Research Foundation and the Charles B. Hammond, MD Research Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Price.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Provost, M.P., Raburn, D.J. et al. Progesterone Increases Mitochondria Membrane Potential in Non-human Primate Oocytes and Embryos. Reprod. Sci. 27, 1206–1214 (2020). https://doi.org/10.1007/s43032-019-00132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00132-2

Keywords

Navigation