Skip to main content

Advertisement

Log in

Dysregulation of miR-202-3p Affects Migration and Invasion of Endometrial Stromal Cells in Endometriosis via Targeting ROCK1

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 25 April 2022

This article has been updated

Abstract

Dysregulation of microRNAs in endometrial cells plays a pivotal role in the pathogenesis of endometriosis (EM). This study aims to investigate the implication of aberrant miR-202-3p expression in EM and the underlying mechanisms. We demonstrated that miR-202-3p was significantly downregulated in eutopic endometrium of EM in comparison to normal endometrial samples (P < 0.05). Primary endometrial stromal cells (ESCs) isolated from eutopic or ectopic endometrium also showed a significant decrease in miR-202-3p level compared to ESCs from normal endometrium (P < 0.01). Functional studies using MTT, wound healing assay and transwell assay indicated that overexpression of miR-202-3p greatly impaired cell viability, migration, and invasion, whereas suppression of miR-202-3p exhibited the opposite effects (P < 0.05 or P < 0.01). miR-202-3p mimics or inhibitors transfection significantly decreased or increased expression of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1), respectively, in ESCs (P < 0.01). Using dual luciferase reporter assay, we validated ROCK1 as a direct target of miR-202-3p. Moreover, negative correlations between miR-202-3p and ROCK1 mRNA/protein levels were determined in both eutopic and normal control endometrium (P < 0.01). In conclusion, these findings suggest that suppression of miR-202-3p in ESCs results in enhanced cell viability, invasion, and migration at least partially via upregulation of its target ROCK1, which eventually contributes to the development of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–99.

    Article  PubMed  Google Scholar 

  2. Vercellini P, Vigano P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. May 2014;10(5):261–75.

  3. Rutherford EJ, Hill ADK, Hopkins AM. Adhesion in physiological, benign and malignant proliferative states of the endometrium: microenvironment and the clinical big picture. Cells. 2018;7(5).

  4. Soni UK, Chadchan SB, Kumar V, Ubba V, Khan MTA, Vinod BSV, et al. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness. Biol Reprod. 2019;100(4):917–38.

    Article  PubMed  Google Scholar 

  5. Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Human reproduction update. Jan 25 2018.

  6. Liu H, Lang JH. Is abnormal eutopic endometrium the cause of endometriosis? The role of eutopic endometrium in pathogenesis of endometriosis. Med Sci Monit. 2011;17(4):Ra92–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sundqvist J, Andersson KL, Scarselli G, Gemzell-Danielsson K, Lalitkumar PG. Expression of adhesion, attachment and invasion markers in eutopic and ectopic endometrium: a link to the aetiology of endometriosis. Hum Reprod. Sep 2012;27(9):2737–46.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang QY, Xia JM, Ding HG, Fei XW, Lin J, Wu RJ. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in endometriosis. Mol Hum Reprod. 2012;18(9):435–41.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Q, Hang Y, Zhang T, et al. USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway. Am J Physiol Cell Physiol. 2018;315(6):C863–c872.

    Article  CAS  PubMed  Google Scholar 

  10. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. Feb 2009;23(2):265–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Panir K, Schjenken JE, Robertson SA, Hull ML. Non-coding RNAs in endometriosis: a narrative review. Human reproduction update. Jul 1 2018;24(4):497–515.

  12. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  CAS  PubMed  Google Scholar 

  14. Li SC, Tang P, Lin WC. Intronic microRNA: discovery and biological implications. DNA Cell Biol. 2007;26(4):195–207.

    Article  PubMed  Google Scholar 

  15. Hull ML, Nisenblat V. Tissue and circulating microRNA influence reproductive function in endometrial disease. Reprod BioMed Online. 2013;27(5):515–29.

    Article  PubMed  CAS  Google Scholar 

  16. Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101(6):1545–51.

    Article  CAS  PubMed  Google Scholar 

  17. Braza-Boils A, Mari-Alexandre J, Gilabert J, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman AE, Liu R, Fu A, et al. Targetome profiling, pathway analysis and genetic association study implicate miR-202 in lymphomagenesis. Cancer Epidemiol Biomark Prev. Mar 2013;22(3):327–36.

    Article  CAS  Google Scholar 

  19. Laird SM, Widdowson R, El-Sheikhi M, et al. Expression of CXCL12 and CXCR4 in human endometrium; effects of CXCL12 on MMP production by human endometrial cells. Hum Reprod (Oxford, England). 2011;26(5):1144–52.

    Article  CAS  Google Scholar 

  20. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81.

    Article  CAS  PubMed  Google Scholar 

  21. Halme J, Hammond MG, Hulka JF, Raj SG, Talbert LM. Retrograde menstruation in healthy women and in patients with endometriosis. Obstet Gynecol. 1984;64(2):151–4.

    CAS  PubMed  Google Scholar 

  22. Colón-Caraballo M, Torres-Reverón A, Soto-Vargas JL, Young SL, Lessey B, Mendoza A, et al. Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod. 2018;99(2):293–307.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu H, Zhang Z, Xiong W, Zhang L, Xiong Y, Li N, et al. Hypoxia-inducible factor-1α promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction. 2017;153(6):809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nothnick WB. The role of micro-RNAs in the female reproductive tract. Reproduction. 2012;143(5):559–76.

    Article  CAS  PubMed  Google Scholar 

  25. Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod. 2009;15(10):625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan Q, Luo X, Toloubeydokhti T, Chegini N. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod. 2007;13(11):797–806.

    Article  CAS  PubMed  Google Scholar 

  27. Nematian SE, Mamillapalli R, Kadakia TS, et al. Systemic Inflammation Induced by microRNAs: endometriosis-derived alterations in circulating microRNA 125b-5p and Let-7b-5p regulate macrophage cytokine production. J Clin Endocrinol Metab. 2018;103(1):64–74.

    Article  PubMed  Google Scholar 

  28. Ma Y, Huang YX, Chen YY. miRNA-34a-5p downregulation of VEGFA in endometrial stem cells contributes to the pathogenesis of endometriosis. Mol Med Rep. 2017;16(6):8259–64.

    Article  CAS  PubMed  Google Scholar 

  29. Liang Z, Chen Y, Zhao Y, et al. miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. 2017;8(1):251.

  30. Peiffer SL, Herzog TJ, Tribune DJ, Mutch DG, Gersell DJ, Goodfellow PJ. Allelic loss of sequences from the long arm of chromosome 10 and replication errors in endometrial cancers. Cancer Res. 1995;55(9):1922–6.

    CAS  PubMed  Google Scholar 

  31. Han X, Wang Q, Wang Y, et al. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1/microRNA-202-3p/periostin axis modulates invasion and epithelial-mesenchymal transition in human cervical cancer. J Cell Physiol. 2019.

  32. Wang Q, Huang Z, Guo W, et al. microRNA-202-3p inhibits cell proliferation by targeting ADP-ribosylation factor-like 5A in human colorectal carcinoma. Clin Cancer Res. 2014;20(5):1146–57.

    Article  PubMed  CAS  Google Scholar 

  33. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sontakke SD, Mohammed BT, McNeilly AS, Donadeu FX. Characterization of microRNAs differentially expressed during bovine follicle development. Reproduction (Cambridge, England). 2014;148(3):271–83.

    Article  CAS  Google Scholar 

  35. Arnold JT, Kaufman DG, Seppala M, Lessey BA. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod. 2001;16(5):836–45.

    Article  CAS  PubMed  Google Scholar 

  36. Yang C, Yao C, Tian R, et al. miR-202-3p regulates Sertoli cell proliferation, synthesis function, and apoptosis by targeting LRP6 and cyclin D1 of Wnt/beta-Catenin signaling. Mol Ther Nucleic Acids. 2019;14:1–19.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Y, Li C, Wang M, Su L, Qu Y, Li J, et al. Decrease of miR-202-3p expression, a novel tumor suppressor, in gastric cancer. PLoS One. 2013;8(7):e69756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diao CY, Guo HB, Ouyang YR, Zhang HC, Liu LH, Bu J, et al. Screening for metastatic osteosarcoma biomarkers with a DNA microarray. Asian Pac J Cancer Prev. 2014;15(4):1817–22.

    Article  PubMed  Google Scholar 

  39. Meola J, Hidalgo Gdos S, Silva JC, et al. Caldesmon: new insights for diagnosing endometriosis. Biol Reprod. 2013;88(5):122.

    Article  PubMed  Google Scholar 

  40. He Y, Guo Q, Cheng Y, et al. Abnormal activation of the sonic hedgehog signaling pathway in endometriosis and its diagnostic potency. Fertil Steril. 2018;110(1):128–136.e2.

    Article  CAS  PubMed  Google Scholar 

  41. Heard ME, Simmons CD, Simmen FA, Simmen RC. Krüppel-like factor 9 deficiency in uterine endometrial cells promotes ectopic lesion establishment associated with activated notch and hedgehog signaling in a mouse model of endometriosis. Endocrinology. 2014;155(4):1532–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ping S, Ma C, Liu P, Yang L, Yang X, Wu Q, et al. Molecular mechanisms underlying endometriosis pathogenesis revealed by bioinformatics analysis of microarray data. Arch Gynecol Obstet. 2016;293(4):797–804.

    Article  CAS  PubMed  Google Scholar 

  43. Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, et al. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod. 2016;31(11):2587–97.

    Article  CAS  PubMed  Google Scholar 

  44. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35.

    Article  CAS  PubMed  Google Scholar 

  45. Guo D, Li Y, Chen Y, Zhang D, Wang X, Lu G, et al. DANCR promotes HCC progression and regulates EMT by sponging miR-27a-3p via ROCK1/LIMK1/COFILIN1 pathway. Cell Prolif. 2019;52(4):e12628.

    PubMed  PubMed Central  Google Scholar 

  46. Di Pietro C, Caruso S, Battaglia R, et al. MiR-27a-3p and miR-124-3p, upregulated in endometrium and serum from women affected by chronic Endometritis, are new potential molecular markers of endometrial receptivity. Am J Reprod Immunol. 2018;80(3):e12858.

    Article  PubMed  CAS  Google Scholar 

  47. Kang CG, Han HJ, Lee HJ, Kim SH, Lee EO. Rho-associated kinase signaling is required for osteopontin-induced cell invasion through inactivating cofilin in human non-small cell lung cancer cell lines. Bioorg Med Chem Lett. 2015;25(9):1956–60.

    Article  CAS  PubMed  Google Scholar 

  48. Yin J, Lv L, Zhai P, Long T, Zhou Q, Pan H, et al. Connexin 40 regulates lung endothelial permeability in acute lung injury via the ROCK1-MYPT1- MLC20 pathway. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L35–44.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Z, Chen P, Guo C, Meng X, Wang D. Effect of LIM kinase 1 overexpression on behaviour of endometriosis-derived stromal cells. Cell Tissue Res. 2015;359(3):885–93.

    Article  CAS  PubMed  Google Scholar 

  50. Yotova I, Quan P, Gaba A, Leditznig N, Pateisky P, Kurz C, et al. Raf-1 levels determine the migration rate of primary endometrial stromal cells of patients with endometriosis. J Cell Mol Med. 2012;16(9):2127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gong J, Guan L, Tian P, Li C, Zhang Y. Rho kinase type 1 (ROCK1) promotes lipopolysaccharide-induced inflammation in corneal epithelial cells by activating toll-like receptor 4 (TLR4)-mediated signaling. Med Sci Monit. 2018;24:3514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yun BH, Chon SJ, Choi YS, et al. Pathophysiology of endometriosis: role of high mobility group box-1 and toll-like receptor 4 developing inflammation in endometrium. PLoS One. 2016;11(2):e0148165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Azuma Y, Taniguchi F, Nakamura K, et al. Lipopolysaccharide promotes the development of murine endometriosis-like lesions via the nuclear factor-kappa B pathway. Am J Reprod Immunol. 2017;77(4).

  54. Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J. 2010;24(9):3186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suarez Y, Fernandez-Hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA. 2008;105(37):14082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19(3):205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Akoum A, Al-Akoum M, Lemay A, et al. Imbalance in the peritoneal levels of interleukin 1 and its decoy inhibitory receptor type II in endometriosis women with infertility and pelvic pain. Fertil Steril. 2008;89(6):1618–24.

    Article  CAS  PubMed  Google Scholar 

  58. Shi C, Wu L, Lin W, Cai Y, Zhang Y, Hu B, et al. MiR-202-3p regulates interleukin-1β-induced expression of matrix metalloproteinase 1 in human nucleus pulposus. Gene. 2019;687:156–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the support for this research from National Natural Science Foundation of China (NSFC) (No. 81100411 to M.Z.), Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (No. cxpy20160038 to M.Z.), Hubei Province health and family planning scientific research project (No. WJ2018H0007 to M.Z.), and Health Commission of Hubei Province scientific research project (No. WJ2019Q048 to M.Z.)

Funding

The present study was supported by National Natural Science Foundation of China (NSFC) (No. 81100411 to M.Z.), Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (No. cxpy20160038 to M.Z.), Hubei Province health and family planning scientific research project (No. WJ2018H0007 to M.Z.), Health Commission of Hubei Province scientific research project (No. WJ2019Q048 to M.Z.)

Author information

Authors and Affiliations

Authors

Contributions

MZ performed most of the experiments and contributed to study design and manuscript drafting; YZ revised the manuscript, LL was responsible for data analysis, LM and CZ provided aid with collection and processing of samples. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Ming Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, Y., Li, L. et al. Dysregulation of miR-202-3p Affects Migration and Invasion of Endometrial Stromal Cells in Endometriosis via Targeting ROCK1. Reprod. Sci. 27, 731–742 (2020). https://doi.org/10.1007/s43032-019-00079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-019-00079-4

Keywords

Navigation