Skip to main content

Advertisement

Log in

Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing

  • Review
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Marine microbial eukaryotes are important primary producers and play critical roles in key biogeochemical cycles. Recent advances in sequencing technology have focused attention on the extent of microbial biodiversity, revealing a huge, previously underestimated phylogenetic diversity with many new lineages. This technology has now become the most important tool to understand the ecological significance of this huge and novel diversity in polar oceans. In particular, high-throughput sequencing technologies have been successfully applied to enumerate and compare marine microbial diversity in polar environments. Here, a brief overview of polar microbial eukaryote diversity, as revealed by in-situ surveys of the high-throughput sequencing on 18S rRNA gene, is presented. Using these ‘omic’ approaches, further attention still needs to be focused on differences between specific locations and/or entire polar oceans and on bipolar comparisons of diversity and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard K, Swift JH, Carmack EC (1985) Thermohaline circulation in the Arctic Mediterranean seas. J Geophys Res Oceans 90:4833–4846

    Google Scholar 

  • AASSP (2011) Australian Commonwealth Government Australian Antarctic Science Strategic Plan 2011–2012 to 2020–2021. Australian Commonwealth Government, Barton

    Google Scholar 

  • Alcamán-Arias ME, Farías L, Verdugo J, Alarcón-Schumacher T, Díez B (2018) Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer. FEMS Microbiol Lett 365:fny090

    Google Scholar 

  • Bachy C, López-García P, Vereshchaka A, Moreira D (2011) Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the North Pole at the end of the polar night. Front Microbiol 2:106

    PubMed  PubMed Central  Google Scholar 

  • Balzano S, Marie D, Gourvil P, Vaulot D (2012) Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples. ISME J 6:1480–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R (2015) Microbial ecology of Antarctic. Nat Rev Microbiol 13:691–706

    CAS  PubMed  Google Scholar 

  • Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431–438

    CAS  PubMed  Google Scholar 

  • Comeau AM, Li WK, Tremblay JÉ, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6:e27492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau AM, Philippe B, Thaler M, Gosselin M, Poulin M, Lovejoy C (2013) Protists in Arctic drift and land fast sea ice. J Phycol 49:229–240

    PubMed  Google Scholar 

  • de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, Surkont J, Leite RB, Pereira-Leal JB, Torgo L, Magalhães C (2019) Diversity and composition of pelagic prokaryotic and protist communities in a thin Arctic Sea-Ice regime. Microb Ecol 78:388–408

    PubMed  Google Scholar 

  • Dìez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    PubMed  PubMed Central  Google Scholar 

  • Doolittle DF, Li WK, Wood AM (2008) Winter time abundance of picoplankton in the Atlantic sector of the Southern Ocean. Nova Hedwigia 133:147–160

    Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517–520

    CAS  PubMed  Google Scholar 

  • Ehrenberg CG (1840) Charakteristik von 274 neuen Arten von Infusorien. Deutsche Akad Wiss, Berlin, pp 197–219

  • Fuentes S, Arroyo JI, Rodríguez-Marconi S, Masotti I, Alarcón-Schumacher T, Polz MF, Trefault N, De la Iglesia R, Díez B (2019) Summer phyto-and bacterioplankton communities during low and high productivity scenarios in the Western Antarctic peninsula. Polar Biol 42:159–169

    Google Scholar 

  • Godhe A, Asplund ME, Harnstrom K, Saravanan V, Tyagi A, Karunasagar I (2008) Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol 74:7174–7182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J, Dong J, Liu X, Massana R (2013) Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164:369–379

    CAS  PubMed  Google Scholar 

  • Grzymski JJ, Riesenfeld CS, Williams TJ, Dussaq AM, Ducklow H, Erickson M, Cavicchioli R, Murray A (2012) A metagenomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J 6:1901–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock AM, Davidson AT, McKinlay J, McMinn A, Schulz K, van den Enden R (2018) Ocean acidification changes the structure of an Antarctic coastal protistan community. Biogeosciences 15:2393–2410

    CAS  Google Scholar 

  • Hegseth EN, Sundfjord A (2008) Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J Mar Syst 74:108–119

    Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Google Scholar 

  • Horner RA (1985) Sea Ice biota. CRC Press, Baron Rouge, p 215

    Google Scholar 

  • Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    PubMed  PubMed Central  Google Scholar 

  • Hyoung MJ, Sang HL, Seung WJ, Hans-Uwe D, Jin HL (2012) Latitudinal variation of phytoplankton communities in the western Arctic Ocean. Deep Sea Res PT II 81:3–17

    Google Scholar 

  • Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P et al (2014) The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12:e1001889

    PubMed  PubMed Central  Google Scholar 

  • Kilias ES, Peeken I, Metfies K (2014) Insight into protist diversity in Arctic sea ice and melt-pond aggregate obtained by pyrosequencing. Polar Res 33:23466

    Google Scholar 

  • Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 136:1735–1738

    Google Scholar 

  • Liu Q, Jiang Y, Wang Q, Wang M, McMinn A, Zhao Q, Xue C, Wang X, Dong J, Yu Y, Han Y, Zhao J (2019) Using picoeukaryote communities to indicate the spatial heterogeneity of the Nordic Seas. Ecol Indic 107:105582

    Google Scholar 

  • Liu Q, Jiang Y (2020) Application of microbial network analysis to discriminate environmental heterogeneity in Fildes Peninsula, Antarctica. Mar Pollut Bull 156:111244

    CAS  PubMed  Google Scholar 

  • Lovejoy C (2007) Do planktonic euryhaline protists exist? J Phycol 43:6

    Google Scholar 

  • Lovejoy C (2014) Changing views of Arctic protists (marine microbial eukaryotes) in a changing Arctic. Acta Protozool 53:91–100

    Google Scholar 

  • Lovejoy C, Galand PE, Kirchman DL (2011) Picoplankton diversity in the Arctic Ocean and surrounding seas. Mar Biodivers 41:5–12

    Google Scholar 

  • Lovejoy C, Legendre L, Martineau MJ, Bâcle J, Von Quillfeldt CH (2002a) Distribution of phytoplankton and other protists in the North Water. Deep Sea Res PT II 49:5027–5047

    Google Scholar 

  • Lovejoy C, Legendre L, Price NM (2002b) Prolonged diatom blooms and microbial food web dynamics: experimental results from an Arctic polynya. Aquat Microb Ecol 29:267–278

    Google Scholar 

  • Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo W, Li HR, Cai MH, He JF (2009) Diversity of microbial eukaryotes in Kongsfjorden, Svalbard. Hydrobiologia 636:233–248

    Google Scholar 

  • Luo W, Li H, Gao S, Yu Y, Lin L, Zeng Y (2016) Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica. Polar Biol 39:605–616

    Google Scholar 

  • Luo W, Li H, Gao X, Lin L, Yu Y, Zeng Y (2018) Microbial eukaryotic diversity with emphasis on picoprasinophytes under the sea ice of the central Arctic Ocean in summer. Curr Sci 115:1709–1713

    CAS  Google Scholar 

  • Marquardt M, Vader A, Stübner EI, Reigstad M, Gabrielsen TM (2016) Strong seasonality of marine microbial eukaryotes in a high-arctic fjord (Isfjorden, in West Spitsbergen, Norway). Appl Environ Microbiol 82:1868–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Tremblay JÉ, Gagnon J, Tremblay G, Lapoussiére A, Jose C, Poulin M, Gosselin M, Gratton Y, Michel C (2010) Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar Ecol Prog Ser 412:69–84

    CAS  Google Scholar 

  • Massana R, Pedrós-Alió C (2008) Unveiling new microbial eukaryotes in the surface ocean. Curr Opin Microbiol 11:213–218

    PubMed  Google Scholar 

  • Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522

    CAS  PubMed  Google Scholar 

  • Matrai PA, Olson E, Suttles S, Hill V, Codispoti La, Light B, Steele M (2013) Synthesis of primary production in the Arctic Ocean: I. Surface waters, 1954–2007. Pro Oceanogr 110:93–106

    Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci USA 105:18860–18864

    CAS  PubMed  Google Scholar 

  • Metfies K, von Appen WJ, Kilias E, Nicolaus A, Nöthig EM (2016) Biogeography and photosynthetic biomass of arctic marine pico-eukaroytes during summer of the record sea ice minimum 2012. PLoS ONE 11:e0148512

    PubMed  PubMed Central  Google Scholar 

  • Mikhailov IS, Zakharova YR, Bukin YS, Galachyants YP, Petrova DP, Sakirko MV, Likhoshway YV (2019) Co-occurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microb Ecol 77:96–109

    PubMed  Google Scholar 

  • Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S (2018) Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J 12:2198–2210

    PubMed  PubMed Central  Google Scholar 

  • Monier A, Terrado R, Thaler M, Comeau A, Medrinal E, Lovejoy C (2013) Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates. Biogeosciences 10:4273–4286

    Google Scholar 

  • Moon-van-de Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Google Scholar 

  • Moreno-Pino M, De la Iglesia R, Valdivia N, Henríquez-Castilo C, Galán A, Díez B, Trefault N (2016) Variation in coastal Antarctic microbial community composition at sub-mesoscale: spatial distance or environmental filtering? FEMS Microbiol Ecol 92:fiw008

    Google Scholar 

  • Onda DF, Medrinal E, Comeau AM, Thaler M, Babin M, Lovejoy C (2017) Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front Mar Sci 4:16

    Google Scholar 

  • Pabi S, van Dijken GL, Arrigo KR (2008) Primary production in the Arctic Ocean, 1998–2006. J Geophys Res Oceans 113:C8005

    Google Scholar 

  • Pedrós-Alió C, Potvin M, Lovejoy C (2015) Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr 139:233–243

    Google Scholar 

  • Piquet AMT, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536

    Google Scholar 

  • Piwosz K, Wiktor JM, Niemi A, Tatarek A, Michel C (2013) Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. ISME J 7:1461–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin M, Daugbjerg N, Gradinger R, Ilyash L, Ratkova T, von Quillfeldt C (2011) The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar Biodivers 41:13–28

    Google Scholar 

  • Rainville L, Lee CM, Woodgate RA (2011) Impact of wind-driven mixing in the Arctic Ocean. Oeanography 24:136–145

    Google Scholar 

  • Różańska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the Coastal Arctic Ocean. J Mar Syst 74:887–901

    Google Scholar 

  • Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60

    CAS  PubMed  Google Scholar 

  • Sarmiento JL, Le Quéré C (1996) Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:1346–1350

    CAS  PubMed  Google Scholar 

  • Scott FJ, Thomas DP (2005) Diatoms. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian biological resources study. Canberra and Australian Antarctic Division, Hobart, pp 13–201

    Google Scholar 

  • Seenivasan R, Sausen N, Medlin LK, Melkonian M (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘Picobiliphytes’. PLoS ONE 8:e59565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swalethorp R, Dinasquet J, Logares R, Bertilsson S, Kjellerup S, Krabberød AK, Moksnes P, Nielsen TG, Riemann L (2019) Microzooplankton distribution in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom. Prog Oceanogr 170:1–10

    Google Scholar 

  • Thaler M, Lovejoy C (2012) Distribution and diversity of a protist predator Cryothecomonas (Cercozoa) in Arctic marine waters. J Eukaryot Microbiol 59:291–299

    CAS  PubMed  Google Scholar 

  • Torstensson A, Dinasquet J, Chierici M, Fransson A, Riemann L, Wulff A (2015) Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice. Environ Microbiol 17:3869–3881

    PubMed  Google Scholar 

  • Tsubouchi T, Bacon S, Naveira Garabato AC, Aksenov Y, Laxon SW, Fahrbach E, Beszczynska-Möller A, Hansen E, Lee CM, Ingvaldsen RB (2012) The Arctic Ocean in summer: a quasi-synoptic inverse estimate of boundary fluxes and water mass transformation. J Geophys Res Ocean 117:C01024

    Google Scholar 

  • Turner J, Colowell SR, Marshall GJ, Lachlan-cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Google Scholar 

  • Wilkins D, Yau S, Williams TJ, Allen MA, Brown MK, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303–335

    CAS  PubMed  Google Scholar 

  • Wolf C, Frickenhaus S, Kilias ES, Peeken I, Metfies K (2013) Regional variability in eukaryotic protist communities in the Amundsen Sea. Antarct Sci 25:741–751

    Google Scholar 

  • Wolf C, Frickenhaus S, Kilias ES, Peeken I, Metfies K (2014) Protist community composition in the Pacific sector of the Southern Ocean during austral summer 2010. Polar Biol 37:375–389

    Google Scholar 

  • Zoccarato L, Pallavicini A, Cerino F, Umani SF, Celussi M (2016) Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers. Prog Oceanogr 149:16–26

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (no. 41676178), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao), China (nos. 2018SDKJ0104-4, 2018SDKJ0406-6), the National Key Research and Development Program of China (no. 2017YFA0603200), and the Grant from Education Department of Shandong Province (S190007170001).

Author information

Authors and Affiliations

Authors

Contributions

QL and QZ collected and analyzed data; AM revised and polished the language; EY reviewed the content; YJ designed and wrote this review. All authors contributed to the information gathering, ideas and concepts, construction of figures, and/or writing of the manuscript.

Corresponding author

Correspondence to Yong Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

We declare that all applicable international, national, and/or institutional guidelines for sampling, care, and experimental use of organisms for the study have been followed and all necessary approvals have been obtained.

Additional information

Edited by Chengchao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhao, Q., McMinn, A. et al. Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing. Mar Life Sci Technol 3, 94–102 (2021). https://doi.org/10.1007/s42995-020-00062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-020-00062-y

Keywords

Navigation