Skip to main content

Advertisement

Log in

Applying the Deep Learning Method for Simulating Outcomes of Educational Interventions

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Predicting outcomes of educational interventions before investing in large-scale implementation efforts in school settings is essential for educational policy-making. However, due to time and resource limitations, conducting longitudinal, large-scale experiments testing outcomes of interventions in authentic settings is difficult. Here, we introduce the deep learning method as a way to address this issue and illustrate the use of the deep learning method for the prediction of intervention outcomes through a MATLAB implementation. The presented deep learning method extracts predictable patterns from an empirical dataset to simulate large-scale intervention outcomes. Findings from our simulations suggest that the deep learning applied simulation model can predict intervention outcomes significantly more accurately compared to the traditional regression analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeager DS, Trzesniewski KH, Dweck CS. An implicit theories of personality intervention reduces adolescent aggression in response to victimization and exclusion. Child Dev. 2013;84:970–88. https://doi.org/10.1111/cdev.12003.

    Article  Google Scholar 

  2. Yeager DS, Trzesniewski KH, Tirri K, et al. Adolescents’ implicit theories predict desire for vengeance after peer conflicts: correlational and experimental evidence. Dev Psychol. 2011;47:1090–107.

    Article  Google Scholar 

  3. Cohen GL, Garcia J, Purdie-Vaughns V, et al. Recursive processes in self-affirmation: intervening to close the minority achievement gap. Science. 2009;324:400–3. https://doi.org/10.1126/science.1170769.

    Article  Google Scholar 

  4. Walton GM, Cohen GL, Cwir D, Spencer SJ. Mere belonging: the power of social connections. J Pers Soc Psychol. 2012;102:513–32. https://doi.org/10.1037/a0025731.

    Article  Google Scholar 

  5. Brannon T, Walton G. Improving attitudes by enacting interests: how intergroup contact can spark interest in an outgroup’s culture and reduce prejudice. Psychol Sci. 2013;24:1947–57.

    Article  Google Scholar 

  6. Yeager DS, Walton GM. Social-psychological interventions in education: they’re not magic. Rev Educ Res. 2011;81:267–301. https://doi.org/10.3102/0034654311405999.

    Article  Google Scholar 

  7. Yeager DS, Romero C, Paunesku D, et al. Using design thinking to improve psychological interventions: the case of the growth mindset during the transition to high school. J Educ Psychol. 2016;108:374–91. https://doi.org/10.1037/edu0000098.

    Article  Google Scholar 

  8. Yeager DS, Fong CJ, Lee HY, Espelage DL. Declines in efficacy of anti-bullying programs among older adolescents: theory and a three-level meta-analysis. J Appl Dev Psychol. 2015;37:36–51. https://doi.org/10.1016/j.appdev.2014.11.005.

    Article  Google Scholar 

  9. Brown AL. Design experiments: theoretical and methodological challenges in creating complex interventions in classroom settings. J Learn Sci. 1992;2:141–78. https://doi.org/10.1207/s15327809jls0202_2.

    Article  Google Scholar 

  10. LeCun Y, Bengio Y, Hinton G, et al. Deep learning. Nature. 2015;521:436–44. https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  11. Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;53:174569161769339. https://doi.org/10.1177/1745691617693393.

    Article  Google Scholar 

  12. Shmueli G. To explain or to predict? Stat Sci. 2010;25:289–310. https://doi.org/10.1214/10-STS330.

    Article  MathSciNet  MATH  Google Scholar 

  13. Simmons JP, Nelson LD, Simonsohn U. False-positive psychology. Psychol Sci. 2011;22:1359–66. https://doi.org/10.1177/0956797611417632.

    Article  Google Scholar 

  14. Loken E, Gelman A. Measurement error and the replication crisis. Science. 2017;355:584–5. https://doi.org/10.1126/science.aal3618.

    Article  Google Scholar 

  15. Han H, Park J, Thoma SJ. Why do we need to employ Bayesian statistics and how can we employ it in studies of moral education?: With practical guidelines to use JASP for educators and researchers. J Moral Educ. 2018;47:519–37. https://doi.org/10.1080/03057240.2018.1463204.

    Article  Google Scholar 

  16. Han H, Park J. Bayesian meta-analysis of fMRI image data. Cogn Neurosci. 2019;10:66–76. https://doi.org/10.1080/17588928.2019.1570103.

    Article  Google Scholar 

  17. MathWorks. Deep learning toolbox. 2018.

  18. Black JE, Reynolds WM. Development, reliability, and validity of the Moral Identity Questionnaire. Pers Individ Differ. 2016;97:120–9. https://doi.org/10.1016/j.paid.2016.03.041.

    Article  Google Scholar 

  19. Han H, Lee K, Soylu F. Predicting long-term outcomes of educational interventions using the Evolutionary Causal Matrices and Markov Chain based on educational neuroscience. Trends Neurosci Educ. 2016;5:157–65. https://doi.org/10.1016/j.tine.2016.11.003.

    Article  Google Scholar 

  20. Han H, Lee K, Soylu F. Simulating outcomes of interventions using a multipurpose simulation program based on the evolutionary causal matrices and Markov chain. Knowl Inf Syst. 2018. https://doi.org/10.1007/s10115-017-1151-0.

    Article  Google Scholar 

  21. Bengio Y. Learning deep architectures for AI. Found Trends® Mach Learn. 2009;2:1–127. https://doi.org/10.1561/2200000006.

    Article  MATH  Google Scholar 

  22. Srivastava N, Hinton GE, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. https://doi.org/10.1214/12-AOS1000.

    Article  MathSciNet  MATH  Google Scholar 

  23. Han H, Kim J, Jeong C, Cohen GL. Attainable and relevant moral exemplars are more effective than extraordinary exemplars in promoting voluntary service engagement. Front Psychol. 2017;8:283. https://doi.org/10.3389/fpsyg.2017.00283.

    Article  Google Scholar 

  24. Han H, Choi Y-J, Dawson KJ, Jeong C. Moral growth mindset is associated with change in voluntary service engagement. PLoS ONE. 2018;13:e0202327. https://doi.org/10.1371/journal.pone.0202327.

    Article  Google Scholar 

  25. Crocetti E, Jahromi P, Meeus W. Identity and civic engagement in adolescence. J Adolesc. 2012;35:521–32.

    Article  Google Scholar 

  26. Porter TJ. Moral and political identity and civic involvement in adolescents. J Moral Educ. 2013;42:239–55. https://doi.org/10.1080/03057240.2012.761133.

    Article  Google Scholar 

  27. Malin H, Han H, Liauw I. Civic purpose in late adolescence: factors that prevent decline in civic engagement after high school. Dev Psychol. 2017. https://doi.org/10.1037/dev0000322.

    Article  Google Scholar 

  28. Google. MNIST For ML beginners. 2017.

  29. Wagenmakers EJ. A practical solution to the pervasive problems of p values. Psychon Bull Rev. 2007;14(5):779–804. https://doi.org/10.3758/BF03194105.

    Article  Google Scholar 

  30. Love J, Selker R, Marsman M, et al. JASP (Version 0.8.2). 2017.

  31. Benjamin DJ, Berger JO, Johannesson M, et al. Redefine statistical significance. Nat Hum Behav. 2018;2(1):6–10. https://doi.org/10.1038/s41562-017-0189-z.

    Article  Google Scholar 

  32. Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90:773–95. https://doi.org/10.2307/2291091.

    Article  MathSciNet  MATH  Google Scholar 

  33. Deng L, Yu D. Deep learning: methods and applications. Found Trends® Signal Process. 2014;7:197–387. https://doi.org/10.1561/2000000039.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tang Y. Deep learning using linear support vector machines. 2013.

  35. Huang PS, He X, Gao J, Deng L, Acero A, Heck L. Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international conference on information and knowledge management—CIKM’13. New York, NY: ACM Press; 2013. p. 2333–8.

    Google Scholar 

  36. Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999;12:145–51. https://doi.org/10.1016/S0893-6080(98)00116-6.

    Article  Google Scholar 

  37. Hinton G, Srivastava N, Swersky K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. 2012.

  38. Kingma D, Ba J. Adam: a method for stochastic optimization. 2014. http://arxiv.org/abs/1412.6980.

  39. MathWorks. Loss function and model quality metrics. 2019.

  40. Han H, Lee K, Soylu F. TensorFlow_Intervention. 2017. https://github.com/xxelloss/TensorFlow_Intervention.

  41. Ruder S. An overview of gradient descent optimization algorithms. 2016. arXiv preprint arXiv:1609.04747.

  42. Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

    Google Scholar 

  43. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  44. Rosseel Y. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012. https://doi.org/10.18637/jss.v048.i02.

    Article  Google Scholar 

  45. McDonald JH. Handbook of biological statistics. 3rd ed. Baltimore: Sparky House Publishing; 2014.

    Google Scholar 

  46. Cohen J. A power primer. Psychol Bull. 1992;112:155–9. https://doi.org/10.1037/0033-2909.112.1.155.

    Article  Google Scholar 

  47. Morey RD, Rouder JN, Jamil T, et al. Package ‘BayesFactor.’ 2018. https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf.

  48. Chou C-N, Shie C-K, Chang F-C, et al. Representation learning on large and small data. In: Vronchidis S, Huet B, Chang EY, Kompatsiaris I, editors. Big data analytics for large-scale multimedia search. Hoboken: Wiley; 2019. p. 3–30.

    Chapter  Google Scholar 

  49. Hekler EB, Klasnja P, Chevance G, et al. Why we need a small data paradigm. BMC Med. 2019;17:133. https://doi.org/10.1186/s12916-019-1366-x.

    Article  Google Scholar 

  50. Ahmed K Ben, Hall LO, Liu R, et al. Neuroimaging based survival time prediction of GBM patients using CNNs from small data. In: 2019 IEEE International Conference on Systems, Man, and Cybernetics. IEEE; 2019. P. 1331–5.

  51. He G. Lung CT imaging sign classification through deep learning on small data; 2019. ArXiv.

  52. Aydin F, Zhang M, Ananda-Rajah M, Haffari G. Medical multimodal classifiers under scarce data condition; 2019. ArXiv.

  53. Han H, Soylu F, Anchan DM. Connecting levels of analysis in educational neuroscience: a review of multi-level structure of educational neuroscience with concrete examples. Trends Neurosci Educ. 2019. https://doi.org/10.1016/j.tine.2019.100113.

    Article  Google Scholar 

  54. Barab S, Squire K. Design-based research: putting a stake in the ground. J Learn Sci. 2004;13:1–14. https://doi.org/10.1207/s15327809jls1301_1.

    Article  Google Scholar 

  55. Liu M-C, Huang Y-M. The use of data science for education: the case of social-emotional learning. Smart Learn Environ. 2017;4:1. https://doi.org/10.1186/s40561-016-0040-4.

    Article  Google Scholar 

Download references

Funding

This study was not funded by any funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyemin Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Deep learning approaches for data analysis: A practical perspective” guest-edited by D. Jude Hemanth, Lipo Wang and Anastasia Angelopoulou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Lee, K. & Soylu, F. Applying the Deep Learning Method for Simulating Outcomes of Educational Interventions. SN COMPUT. SCI. 1, 70 (2020). https://doi.org/10.1007/s42979-020-0075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-0075-z

Keywords

Navigation