Skip to main content
Log in

Can We Capitalize on Central Nervous System Plasticity in Young Athletes to Inoculate Against Injury?

  • Review Article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

There are numerous physical, social, and psychological benefits of exercise, sport and play for youth athletes. However, dynamic activities come with a risk of injury that has yet to be abated, warranting novel therapeutics to promote injury-resistance and to keep an active lifestyle throughout the lifespan. The purpose of the present manuscript was to summarize the extant literature and potential connecting framework regarding youth brain development and neuroplasticity associated with musculoskeletal injury. This review provides the foundation for our proposed framework that utilizes the OPTIMAL (Optimizing Performance Through Intrinsic Motivation and Attention for Learning) theory of motor learning to elicit desirable biomechanical adaptations to support injury prevention (injury risk reduction), rehabilitation strategies, and exercise performance for youth physical activity and play across all facets of sport (Prevention Rehabilitation Exercise Play; PREP). We conclude that both young male and females are ripe for OPTIMAL PREP strategies that promote desirable movement mechanics by leveraging a unique time window for which their heightened state of central nervous system plasticity is capable of enhanced adaptation through novel therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdollahipour R, Valtr L, Wulf G. Optimizing bowling performance. J Mot Learn Dev. 2020;8(2):233–44. https://doi.org/10.1123/jmld.2019-0017.

    Article  Google Scholar 

  2. Abram SG, Price AJ, Judge A, Beard DJ. Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: hospital statistics from 1997 to 2017. Br J Sports Med. 2020;54(5):286–91. https://doi.org/10.1136/bjsports-2018-100195.

    Article  Google Scholar 

  3. Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J. The Swedish National Anterior Cruciate Ligament Register: a report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med. 2012;40(10):2230–5. https://doi.org/10.1177/0363546512457348.

    Article  Google Scholar 

  4. Anand M, Diekfuss JA, Bonnette S, Hurn M, Short I, Grooms DR, Myer GD. Validity assessment of a single camera MRI-compatible motion capture system for use with lower extremity neuroimaging paradigms. Int J Sports Phys Ther. 2020. (in press). 

  5. Ardoy DN, Fernandez-Rodriguez JM, Jimenez-Pavon D, Castillo R, Ruiz JR, Ortega FB. A physical education trial improves adolescents' cognitive performance and academic achievement: the EDUFIT study. Scand J Med Sci Sports. 2014;24(1):e52–61. https://doi.org/10.1111/sms.12093.

    Article  CAS  PubMed  Google Scholar 

  6. Balyi I, Hamilton A. Long-Term Athlete Development: Trainability in children and adolescents. Windows of opportunity. Optimal trainability. Victoria, BC: National Coaching Institute British Columbia & Advanced Training and Performance Ltd; 2004.

    Google Scholar 

  7. Baumeister J, Reinecke K, Schubert M, Weib M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29(9):1383–9. https://doi.org/10.1002/jor.21380.

    Article  Google Scholar 

  8. Baumeister J, Reinecke K, Weiss M. Changed cortical activity after anterior cruciate ligament reconstruction in a joint position paradigm: an EEG study. Scand J Med Sci Sports. 2008;18(4):473–84. https://doi.org/10.1111/j.1600-0838.2007.00702.x.

    Article  CAS  Google Scholar 

  9. Baxter-Jones AD, Eisenmann JC, Sherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17(1):18–30.

    Article  Google Scholar 

  10. Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian Society for Exercise Physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Metab. 2008;33(3):547–61. https://doi.org/10.1139/h08-020.

    Article  PubMed  Google Scholar 

  11. Bell DR, Oates DC, Clark MA, Padua DA. Two-and 3-dimensional knee valgus are reduced after an exercise intervention in young adults with demonstrable valgus during squatting. J Athl Train. 2013;48(4):442–9. https://doi.org/10.4085/1062-6050-48.3.16.

    Article  Google Scholar 

  12. Benjaminse A, Gokeler A, Dowling AV, Faigenbaum A, Ford KR, Hewett TE, Onate JA, Otten B, Myer GD. Optimization of the anterior cruciate ligament injury prevention paradigm: novel feedback techniques to enhance motor learning and reduce injury risk. J Orthop Sports Phys Ther. 2015;45(3):170–82. https://doi.org/10.2519/jospt.2015.4986.

    Article  PubMed  Google Scholar 

  13. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med. 1995;34(4):537–41. https://doi.org/10.1002/mrm.1910340409.

    Article  CAS  PubMed  Google Scholar 

  14. Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–8.

    Article  CAS  Google Scholar 

  15. Bonnette S, Anand M, Barber KD, DiCesare CA, Diekfuss JA, Grooms DR, Kiefer AW, Kitchen K, Reddington D, Riehm C, Riley MA, Schille A, Shafer J, Thomas S, Myer GD. The future of ACL prevention and rehabilitation: Integrating technology to optimize personalized medicine. Aspetar Sports Med J. 2020;9:72–7.

    Google Scholar 

  16. Bonnette S, DiCesare CA, Diekfuss JA, Grooms DR, MacPherson RP, Riley MA, Myer GD. Advancing anterior cruciate ligament injury prevention using real-time biofeedback for amplified sensorimotor integration. J Athl Train. 2019;54(9):985–6. https://doi.org/10.4085/1062-6050-54.083.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bonnette S, DiCesare CA, Kiefer AW, Riley MA, Barber-Foss KD, Thomas S, Diekfuss JA, Myer GD. A technical report on the development of a real-time visual biofeedback system to optimize motor learning and movement deficit correction. J Sports Sci Med. 2020;19(1):84–94.

    PubMed  PubMed Central  Google Scholar 

  18. Bonnette S, DiCesare CA, Kiefer AW, Riley MA, Barber Foss KD, Thomas S, Kitchen K, Diekfuss JA, Myer GD. Injury risk factors integrated into self-guided real-time biofeedback improves high-risk biomechanics. J Sport Rehab. 2019;28(8):831–9. https://doi.org/10.1123/jsr.2017-0391.

    Article  Google Scholar 

  19. Bonnette S, Diekfuss JA, Grooms DR, Kiefer AW, Riley MA, Riehm C, Moore C, Barber Foss KD, DiCesare CA, Baumeister J, Myer GD. Electrocortical dynamics differentiate athletes exhibiting low- and high-ACL injury risk biomechanics. Psychophysiology. 2020. https://doi.org/10.1111/psyp.13530.

    Article  PubMed  Google Scholar 

  20. Bray S, Krongold M, Cooper C, Lebel C. Synergistic effects of age on patterns of white and gray matter volume across childhood and adolescence. eNeuro. 2015;2(4):e0003–15. https://doi.org/10.1523/ENEURO.0003-15.2015.

    Article  Google Scholar 

  21. Calvert GA, Hansen PC, Iversen SD, Brammer MJ. Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage. 2001;14(2):427–38. https://doi.org/10.1006/nimg.2001.0812.

    Article  CAS  PubMed  Google Scholar 

  22. Chen R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res. 2004;154(1):1–10. https://doi.org/10.1007/s00221-003-1684-1.

    Article  PubMed  Google Scholar 

  23. Chua LK, Wulf G, Lewthwaite R. Onward and upward: optimizing motor performance. Hum Mov Sci. 2018;60:107–14. https://doi.org/10.1016/j.humov.2018.05.006.

    Article  PubMed  Google Scholar 

  24. Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR. High-intensity interval training for cognitive and mental health in adolescents. Med Sci Sports Exerc. 2016;48(10):1985–93. https://doi.org/10.1249/mss.0000000000000993.

    Article  PubMed  Google Scholar 

  25. Courtney C, Rine RM, Kroll P. Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture. 2005;22(1):69–74. https://doi.org/10.1016/j.gaitpost.2004.07.002.

    Article  PubMed  Google Scholar 

  26. Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: a task-based functional connectivity analysis. Neurosci Lett. 2020;730:134985. https://doi.org/10.1016/j.neulet.2020.134985.

    Article  CAS  PubMed  Google Scholar 

  27. Criss CR, Grooms DR, Diekfuss JA, Ellis JD, Thomas S, DiCesare CA, Bonnette S, Yuan W, Dudley JA, Schneider DK, Berz K, Myer GD. Simulated landing neural correlates of anterior cruciate ligament injury risk biomechanics. J Athl Train. 2019;54(9):989–1003. https://doi.org/10.4085/1062-6050-54.081.

    Article  Google Scholar 

  28. Culvenor AG, Barton CJ. ACL injuries: the secret probably lies in optimising rehabilitation. Br J Sports Med. 2018;52(22):1416–8. https://doi.org/10.1136/bjsports-2017-098872.

    Article  PubMed  Google Scholar 

  29. Dai B, Mao M, Garrett WE, Yu B. Biomechanical characteristics of an anterior cruciate ligament injury in javelin throwing. J Sport Health Sci. 2015;4(4):333–40. https://doi.org/10.1016/j.jshs.2015.07.004.

    Article  Google Scholar 

  30. Dayan E, Cohen LG. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–54. https://doi.org/10.1016/j.neuron.2011.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Graaf-Peters VB, Hadders-Algra M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev. 2006;82(4):257–66. https://doi.org/10.1016/j.earlhumdev.2005.10.013.

    Article  PubMed  Google Scholar 

  32. DiCesare CA, Kiefer AW, Bonnette SH, Myer GD. High-risk lower-extremity biomechanics evaluated in simulated soccer-specific virtual environments. J Sport Rehabil. 2019;29(3):294-300. https://doi.org/10.1123/jsr.2018-0237.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Diekfuss JA, Anand M, Grooms DR, Slutsky-Ganesh AB, Bonnette, S, Barber Foss KD, DiCesare CA, Hunnicutt JL, MyerGD. Novel brain mechanisms regulating anterior cruciate ligament injury risk biomechanics utilizing a motion analysis system integrated with functional magnetic resonance imaging during lower extremity movement. National Athletic Trainers’ Association Clinical Symposia & Athletic Training Exposition. 2020, July 13–16 (Virtual due to COVID-19). 

  34. Diekfuss JA, Bonnette S, Hogg JA, Riehm C, Grooms DR, Singh H, Anand M, Slutsky AB, Wilkerson G, Myer GD. Practical training strategies to apply neuro-mechanistic motor learning principles to facilitate adaptations towards injury-resistant movement in youth. J Sci Sport Exerc. 2020. https://doi.org/10.1007/s42978-020-00083-0.

  35. Diekfuss JA, Grooms DR, Bonnette S, DiCesare CA, Thomas S, MacPherson RP, Ellis JD, Kiefer AW, Riley MA, Schneider DK, Gadd B, Kitchen K, Barber Foss KD, Dudley JA, Yuan W, Myer GD. Real-time biofeedback integrated into neuromuscular training reduces high-risk knee biomechanics and increases functional brain connectivity: a preliminary longitudinal investigation. Psychophysiology. 2020. https://doi.org/10.1111/psyp.13545.

    Article  PubMed  Google Scholar 

  36. Diekfuss JA, Grooms DR, Hogg JA, Singh H, Slutsky AB, Bonnette S, Riehm C, Anand M, Nissen KS, Wilkerson G, Myer GD. Targeted application of motor learning theory to leverage youth neuroplasticity for enhanced injury-resistance and exercise performance: OPTIMAL PREP. J Sci Sport Exerc. 2020. https://doi.org/10.1007/s42978-020-00085-y.

  37. Diekfuss JA, Grooms DR, Nissen KS, Schneider DK, Foss KDB, Thomas S, Bonnette S, Dudley JA, Yuan W, Reddington DL, Ellis JD, Leach J, Gordon M, Lindsey C, Rushford K, Shafer C, Myer GD. Alterations in knee sensorimotor brain functional connectivity contributes to ACL injury in male high-school football players: a prospective neuroimaging analysis. Braz J Phys Ther. 2020,24(5):415–23. https://doi.org/10.1016/j.bjpt.2019.07.004.

    Article  PubMed  Google Scholar 

  38. Diekfuss JA, Grooms DR, Yuan W, Dudley J, Barber Foss KD, Thomas S, Ellis JD, Schneider DK, Leach J, Bonnette S, Myer GD. Does brain functional connectivity contribute to musculoskeletal injury? A preliminary prospective analysis of a neural biomarker of ACL injury risk. J Sci Med Sport. 2019;22(2):169–74. https://doi.org/10.1016/j.jsams.2018.07.004.

    Article  PubMed  Google Scholar 

  39. Diekfuss JA, Raisbeck LD. Focus of attention and instructional feedback from NCAA division 1 collegiate coaches. J Mot Learn Dev. 2016;4(2):262–73. https://doi.org/10.1123/jmld.2015-0026.

    Article  Google Scholar 

  40. Dragicevic-Cvjetkovic D, Jandric S, Bijeljac S, Palija S, Manojlovic S, Talic G. The effects of rehabilitation protocol on functional recovery after anterior cruciate ligament reconstruction. Med Arch. 2014;68(5):350. https://doi.org/10.5455/medarh.2014.68.350-352.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Durham K, Van Vliet PM, Badger F, Sackley C. Use of information feedback and attentional focus of feedback in treating the person with a hemiplegic arm. Physiother Res Int. 2009;14(2):77–90. https://doi.org/10.1002/pri.431.

    Article  PubMed  Google Scholar 

  42. Faigenbaum AD, Lloyd RS, Myer GD. Youth resistance training: past practices, new perspectives, and future directions. Pediatr Exerc Sci. 2013;25(4):591–604. https://doi.org/10.1123/pes.25.4.591.

    Article  PubMed  Google Scholar 

  43. Faltus J, Criss CR, Grooms DR. Shifting focus: a clinician's guide to understanding neuroplasticity for anterior cruciate ligament rehabilitation. Curr Sports Med Rep. 2020;19(2):76–83. https://doi.org/10.1249/jsr.0000000000000688.

    Article  PubMed  Google Scholar 

  44. Fayad LM, Parellada JA, Parker L, Schweitzer ME. MR imaging of anterior cruciate ligament tears: is there a gender gap? Skelet Radiol. 2003;32(11):639–46. https://doi.org/10.1123/pes.25.4.591.

    Article  Google Scholar 

  45. Ford P, De Ste Croix M, Lloyd R, Meyers R, Moosavi M, Oliver J, Till K, Williams C. The long-term athlete development model: physiological evidence and application. J Sports Sci. 2011;29(4):389–402. https://doi.org/10.1080/02640414.2010.536849.

    Article  PubMed  Google Scholar 

  46. Frosch K, Habermann F, Fuchs M, Michel A, Junge R, Schmidtmann U, Stürmer K. Is prolonged ambulatory physical therapy after anterior cruciate ligament-plasty indicated? Comparison of costs and benefits. Der Unfallchirurg. 2001;104(6):513–8. https://doi.org/10.1007/s001130170114.

    Article  CAS  PubMed  Google Scholar 

  47. Geuze RH. Postural control in children with developmental coordination disorder. Neural Plast. 2005;12(2–3):183–96. https://doi.org/10.1155/NP.2005.183.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Giugliano DN, Solomon JL. ACL tears in female athletes. Phys Med Rehabil Clin N Am. 2007;18(3):417–38. https://doi.org/10.1016/j.pmr.2007.05.002.

    Article  PubMed  Google Scholar 

  49. Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49(3):188–95. https://doi.org/10.1136/bjsports-2013-092982.

    Article  PubMed  Google Scholar 

  50. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101(21):8174. https://doi.org/10.1073/pnas.0402680101.

    Article  CAS  PubMed  Google Scholar 

  51. Gokeler A, Benjaminse A, Hewett TE, Paterno MV, Ford KR, Otten E, Myer GDD. Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11):1065–74. https://doi.org/10.1007/s40279-013-0095-0.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gokeler A, Benjaminse A, Seil R, Kerkhoffs G, Verhagen E. Using principles of motor learning to enhance ACL injury prevention programs. Sports Orthop Traumatol. 2018;34(1):23–30. https://doi.org/10.1007/s40279-019-01058-0.

    Article  Google Scholar 

  53. Gokeler A, Benjaminse A, Welling W, Alferink M, Eppinga P, Otten B. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction. Phys Ther Sport. 2015;16(2):114–20. https://doi.org/10.1016/j.ptsp.2014.06.002.

    Article  PubMed  Google Scholar 

  54. Gokeler A, Neuhaus D, Benjaminse A, Grooms DR, Baumeister J. Principles of motor learning to support neuroplasticity after ACL injury: implications for optimizing performance and reducing risk of second ACL injury. Sports Med. 2019;49:853–65. https://doi.org/10.1007/s40279-019-01058-0.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gokeler A, Seil R, Kerkhoffs G, Verhagen E. A novel approach to enhance ACL injury prevention programs. J Exp Orthop. 2018;5(1):22. https://doi.org/10.1186/s40634-018-0137-5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grindem H, Arundale AJ, Ardern CL. Alarming underutilisation of rehabilitation in athletes with anterior cruciate ligament reconstruction: four ways to change the game. Br J Sports Med. 2018;52(18):1162–3. https://doi.org/10.1136/bjsports-2017-098746.

    Article  PubMed  Google Scholar 

  57. Grindstaff TL, Jackson KR, Garrison JC, Diduch DR, Ingersoll CD. Decreased quadriceps activation measured hours prior to a noncontact anterior cruciate ligament tear. J Orthop Sports Phys Ther. 2008;38(8):502–7. https://doi.org/10.2519/jospt.2008.2761.

    Article  Google Scholar 

  58. Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;45(5):381–93. https://doi.org/10.2519/jospt.2015.5549.

    Article  PubMed  Google Scholar 

  59. Grooms DR, Diekfuss JA, Ellis JD, Yuan W, Dudley JA, Barber Foss KD, Thomas S, Altaye M, Haas L, Williams B, Lanier JM, Bridgewater K, Myer GD. A novel approach to evaluate brain activation for lower extremity motor control. J Neuroimaging. 2019;29(5):580–8. https://doi.org/10.1111/jon.12645.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Grooms DR, Diekfuss JA, Ellis JD, Thomas S, DiCesare CA, Bonnette S, Yuan W, Dudley JA, Schneider DK, Berz K, Riley MA, Criss CR, Myer GD. Sensorimotor neural correlates of anterior cruciate ligament injury risk biomechanics. 2019; Abstracts: ACL Research Retreat VIII, Greensboro, NC, March 14-16, 2019, national conference, podium presentation. https://doi.org/10.4085/1062-6050-54.081.

  61. Grooms DR, Kiefer AW, Riley MA, Ellis JD, Thomas S, Kitchen K, DiCesare CA, Bonnette S, Gadd B, Barber Foss KD, Yuan W, Silva P, Galloway R, Diekfuss JA, Leach J, Berz K, Myer GD. Brain-behavior mechanisms for the transfer of neuromuscular training adaptions to simulated sport: initial findings from the train the brain project. J Sport Rehabil. 2018;27(5):1–5. https://doi.org/10.1123/jsr.2017-0241.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Grooms DR, Page S, Onate JA. Brain activation for knee movement measured days before second anterior cruciate ligament injury: neuroimaging in musculoskeletal medicine. J Athl Train. 2015;50(10):1005–10. https://doi.org/10.4085/1062-6050-50-10-02.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grooms DR, Page SJ, Nichols-Larsen DS, Chaudhari AM, White SE, Onate JA. Neuroplasticity associated with anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2017;47(3):180–9. https://doi.org/10.2519/jospt.2017.7003.

    Article  PubMed  Google Scholar 

  64. Halperin I, Chapman DW, Martin DT, Abbiss C, Wulf G. Coaching cues in amateur boxing: an analysis of ringside feedback provided between rounds of competition. Psychol Sport Exerc. 2016;25:44–50. https://doi.org/10.1016/j.psychsport.2016.04.003.

    Article  Google Scholar 

  65. Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):2347–53. https://doi.org/10.1177/0363546516657338.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Héroux ME, Tremblay F. Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):823–33. https://doi.org/10.1007/s00167-006-0063-4.

    Article  PubMed  Google Scholar 

  67. Herrington L, Ghulam H, Comfort P. Quadriceps strength and functional performance after anterior cruciate ligament reconstruction in professional soccer players at time of return to sport. J Strength Cond Res. 2018. https://doi.org/10.1519/JSC.0000000000002749.

  68. Herrington L, Myer G, Horsley I. Task based rehabilitation protocol for elite athletes following anterior cruciate ligament reconstruction: a clinical commentary. Phys Ther Sport. 2013;14(4):188–98. https://doi.org/10.1016/j.ptsp.2013.08.001.

    Article  PubMed  Google Scholar 

  69. Herting MM, Chu X. Exercise, cognition, and the adolescent brain. Birth Defects Res. 2017;109(20):1672–9. https://doi.org/10.1002/bdr2.1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Herting MM, Gautam P, Spielberg JM, Dahl RE, Sowell ER. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation. PLoS One. 2015;10(3):e0119774–e01197740119774. https://doi.org/10.1371/journal.pone.0119774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hewett TE, Myer GDD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. https://doi.org/10.1177/0363546504269591.

    Article  PubMed  Google Scholar 

  72. Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417–22. https://doi.org/10.1136/bjsm.2009.059162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huston LJ, Greenfield MLV, Wojtys EM. Anterior cruciate ligament injuries in the female athlete: potential risk factors. Clin Orthop Relat Res. 2000;372(372):50–63. https://doi.org/10.1097/00003086-200003000-00007.

    Article  Google Scholar 

  74. Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 1979;163(2):195–205. https://doi.org/10.1016/0006-8993(79)90349-4.

    Article  CAS  PubMed  Google Scholar 

  75. Ithurburn MP, Longfellow MA, Thomas S, Paterno MV, Schmitt LC. Knee function, strength, and resumption of preinjury sports participation in young athletes following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2019;49(3):145–53. https://doi.org/10.2519/jospt.2019.8624.

    Article  PubMed  Google Scholar 

  76. Janssen K, Orchard J, Driscoll T, van Mechelen W. High incidence and costs for anterior cruciate ligament reconstructions performed in Australia from 2003–2004 to 2007–2008: time for an anterior cruciate ligament register by Scandinavian model? Scand J Med Sci Sports. 2012;22(4):495–501. https://doi.org/10.1111/j.1600-0838.2010.01253.x.

    Article  CAS  PubMed  Google Scholar 

  77. Johnson L, Burridge JH, Demain SH. Internal and external focus of attention during gait re-education: an observational study of physical therapist practice in stroke rehabilitation. Phys Ther. 2013;93(7):957–66. https://doi.org/10.2522/ptj.20120300.

    Article  PubMed  Google Scholar 

  78. Kal E, Prosée R, Winters M, van der Kamp J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS One. 2018;13(9):e0203591. https://doi.org/10.1371/journal.pone.0203591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kantak SS, Winstein CJ. Learning–performance distinction and memory processes for motor skills: a focused review and perspective. Behav Brain Res. 2012;228(1):219–31. https://doi.org/10.1016/j.bbr.2011.11.028.

    Article  PubMed  Google Scholar 

  80. Kapreli E, Athanasopoulos S, Gliatis J, Papathanasiou M, Peeters R, Strimpakos N, Van Hecke P, Gouliamos A, Sunaert S. Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. Am J Sports Med. 2009;37(12):2419–26. https://doi.org/10.1177/0363546509343201.

    Article  PubMed  Google Scholar 

  81. Konishi Y, Aihara Y, Sakai M, Ogawa G, Fukubayashi T. Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports. 2007;17(4):393–9. https://doi.org/10.1111/j.1600-0838.2006.00573.x.

    Article  CAS  PubMed  Google Scholar 

  82. Kotsifaki A, Korakakis V, Whiteley R, Van Rossom S, Jonkers I. Measuring only hop distance during single leg hop testing is insufficient to detect deficits in knee function after ACL reconstruction: a systematic review and meta-analysis. Br J Sports Med. 2020;54(3):139–53. https://doi.org/10.1136/bjsports-2018-099918.

    Article  PubMed  Google Scholar 

  83. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R. Mechanisms of anterior cruciate ligament injury in basketball. Am J Sports Med. 2007;35(3):359–67. https://doi.org/10.1177/0363546506293899.

    Article  PubMed  Google Scholar 

  84. Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports. 2007;17(5):508–19. https://doi.org/10.1111/j.1600-0838.2006.00558.x.

    Article  CAS  PubMed  Google Scholar 

  85. Lavender A, Laurence A, Bangash I, Smith R. Cortical evoked potentials in the ruptured anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1999;7(2):98–101. https://doi.org/10.1007/s001670050129.

    Article  CAS  PubMed  Google Scholar 

  86. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, Blumenthal JD, Lerch J, Zijdenbos AP, Evans AC, Thompson PM, Giedd JN. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage. 2007;36(4):1065–73. https://doi.org/10.1016/j.neuroimage.2007.03.053.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lepley A, Gribble P, Thomas A, Tevald M, Sohn D, Pietrosimone B. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: a 6-month longitudinal investigation. Scand J Med Sci Sports. 2015;25(6):828–39. https://doi.org/10.1111/sms.12435.

    Article  CAS  PubMed  Google Scholar 

  88. Lepley AS, Ericksen HM, Sohn DH, Pietrosimone BG. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction. Knee. 2014;21(3):736–42. https://doi.org/10.1016/j.knee.2014.02.008.

    Article  PubMed  Google Scholar 

  89. Lepley AS, Grooms DR, Burland JP, Davi SM, Kinsella-Shaw JM, Lepley LK. Quadriceps muscle function following anterior cruciate ligament reconstruction: systemic differences in neural and morphological characteristics. Exp Brain Res. 2019;1–12: https://doi.org/10.1007/s00221-019-05499-x.

  90. Lepley AS, Ly MT, Grooms DR, Kinsella-Shaw JM, Lepley LK. Corticospinal tract structure and excitability in patients with anterior cruciate ligament reconstruction: a DTI and TMS study. Neuroimage Clin. 2020;25:102157. https://doi.org/10.1016/j.nicl.2019.102157.

    Article  PubMed  Google Scholar 

  91. Lloyd RS, Cronin JB, Faigenbaum AD, Haff GG, Howard R, Kraemer WJ, Micheli LJ, Myer GD, Oliver JL. National Strength and Conditioning Association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6):1491–509. https://doi.org/10.1519/JSC.0000000000001387.

    Article  PubMed  Google Scholar 

  92. Lloyd RS, Faigenbaum AD, Myer G, Stone M, Oliver J, Jeffreys I, Pierce K. UKSCA position statement: Youth resistance training. Prof Strength Cond. 2012;26:26–39.

    Google Scholar 

  93. Lloyd RS, Meyers RW, Oliver JL. The natural development and trainability of plyometric ability during childhood. Strength Cond J. 2011;33(2):23–32. https://doi.org/10.1519/SSC.0b013e3182093a27.

    Article  Google Scholar 

  94. Lloyd RS, Oliver JL. The youth physical development model: a new approach to long-term athletic development. Strength Cond J. 2012;34(3):61–72. https://doi.org/10.1519/SSC.0b013e31825760ea.

    Article  Google Scholar 

  95. Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, Croix MBDS, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP. Long-term athletic development-part 1: a pathway for all youth. J Strength Cond Res. 2015;29(5):1439–50. https://doi.org/10.1519/JSC.0000000000000756.

    Article  PubMed  Google Scholar 

  96. Lloyd RS, Oliver JL, Faigenbaum AD, Howard R, Croix MBDS, Williams CA, Best TM, Alvar BA, Micheli LJ, Thomas DP. Long-term athletic development, part 2: barriers to success and potential solutions. J Strength Cond Res. 2015;29(5):1451–64. https://doi.org/10.1519/01.JSC.0000465424.75389.56.

    Article  PubMed  Google Scholar 

  97. Lloyd RS, Oliver JL, Faigenbaum AD, Myer GD, Croix MBDS. Chronological age vs. biological maturation: implications for exercise programming in youth. J Strength Cond Res. 2014;28(5):1454–64. https://doi.org/10.1519/JSC.0000000000000391.

    Article  PubMed  Google Scholar 

  98. Lloyd RS, Oliver JL, Meyers RW, Moody JA, Stone MH. Long-term athletic development and its application to youth weightlifting. Strength Cond J. 2012;34(4):55–66. https://doi.org/10.1519/SSC.0b013e31825ab4bb.

    Article  Google Scholar 

  99. Lloyd RS, Read P, Oliver JL, Meyers RW, Nimphius S, Jeffreys I. Considerations for the development of agility during childhood and adolescence. Strength Cond J. 2013;35(3):2–11. https://doi.org/10.1519/SSC.0b013e31827ab08c.

    Article  Google Scholar 

  100. Losciale JM, Bullock G, Cromwell C, Ledbetter L, Pietrosimone L, Sell TC. Hop testing lacks strong association with key outcome variables after primary anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med. 2020;48(2):511–22. https://doi.org/10.1177/0363546519838794.

    Article  PubMed  Google Scholar 

  101. Luc-Harkey BA, Harkey MS, Pamukoff DN, Kim RH, Royal TK, Blackburn JT, Spang JT, Pietrosimone B. Greater intracortical inhibition associates with lower quadriceps voluntary activation in individuals with ACL reconstruction. Exp Brain Res. 2017;235(4):1129–37. https://doi.org/10.1007/s00221-017-4877-8.

    Article  PubMed  Google Scholar 

  102. Makaruk H, Porter JM, Bodasińska A, Palmer S. Optimizing the penalty kick under external focus of attention and autonomy support instructions. Eur J Sport Sci. 2020;1–9. https://doi.org/10.1080/17461391.2020.1720829.

  103. Makaruk H, Porter JM, Sadowski J, Bodasińska A, Zieliński J, Niźnikowski T, Mastalerz A. The effects of combining focus of attention and autonomy support on shot accuracy in the penalty kick. PLoS One. 2019;14(9):e0213487. https://doi.org/10.1371/journal.pone.0213487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity. Champaign: Human Kinetics; 2004.

    Book  Google Scholar 

  105. Malina RM, Cumming SP, Morano PJ, Barron M, Miller SJ. Maturity status of youth football players: a noninvasive estimate. Med Sci Sports Exerc. 2005;37(6):1044–52.

    PubMed  Google Scholar 

  106. Marchant DC, Carnegie E, Wood G, Ellison P. Influence of visual illusion and attentional focusing instruction in motor performance. Int J Sport Exerc Psychol. 2019;17(6):659–69. https://doi.org/10.1080/1612197X.2018.1441165.

    Article  Google Scholar 

  107. McCormack RG, Hutchinson MR. Time to be honest regarding outcomes of ACL reconstructions: should we be quoting 55–65% success rates for high-level athletes? Br J Sports Med. 2016;50(19):1167–8. https://doi.org/10.1136/bjsports-2016-096324.

    Article  PubMed  Google Scholar 

  108. Miao X, Huang H, Hu X, Li D, Yu Y, Ao Y. The characteristics of EEG power spectra changes after ACL rupture. PLoS One 2017;12(2). https://doi.org/10.1371/journal.pone.0170455.

  109. Monfort SM, Pradarelli JJ, Grooms DR, Hutchison KA, Onate JA, Chaudhari AM. Visual-spatial memory deficits are related to increased knee valgus angle during a sport-specific sidestep cut. Am J Sports Med. 2019;47(6):1488–95. https://doi.org/10.1177/0363546519834544.

    Article  PubMed  Google Scholar 

  110. Myer GD, Faigenbaum AD, Chu DA, Falkel J, Ford KR, Best TM, Hewett TE. Integrative training for children and adolescents: techniques and practices for reducing sports-related injuries and enhancing athletic performance. Phys Sportsmed. 2011;39(1):74–84. https://doi.org/10.3810/psm.2011.02.1854.

    Article  PubMed  Google Scholar 

  111. Myer GD, Ford KR, Brent JL, Hewett TE. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res. 2006;20(2):345. https://doi.org/10.1519/R-17955.1.

  112. Myer GD, Ford KR, Hewett TE. Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train. 2004;39(4):352.

    PubMed  PubMed Central  Google Scholar 

  113. Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3):445–55. https://doi.org/10.1177/0363546505281241.

    Article  PubMed  Google Scholar 

  114. Myer GD, Ford KR, Palumbo JP, Hewett TE. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res. 2005;19(1):51–60. https://doi.org/10.1519/13643.1.

    Article  PubMed  Google Scholar 

  115. Myer GD, Lloyd RS, Brent JL, Faigenbaum AD. How young is “too young” to start training? ACSM's Health Fit J. 2013;17(5):14. https://doi.org/10.1249/FIT.0b013e3182a06c59.

    Article  Google Scholar 

  116. Myer GD, Paterno MV, Ford KR, Hewett TE. Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res. 2008;22(3):987–1014. https://doi.org/10.1519/JSC.0b013e31816a86cd.

    Article  PubMed  Google Scholar 

  117. Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE. Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther. 2006;36(6):385–402. https://doi.org/10.2519/jospt.2006.2222.

    Article  PubMed  Google Scholar 

  118. Myer GD, Sugimoto D, Thomas S, Hewett TE. The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. Am J Sports Med. 2013;41(1):203–15. https://doi.org/10.1177/0363546512460637.

    Article  PubMed  Google Scholar 

  119. Myer GDD, Schmitt LC, Brent JL, Ford KR, Barber Foss KD, Scherer BJ, Heidt RS Jr, Divine JG, Hewett TE. Utilization of modified NFL combine testing to identify functional deficits in athletes following ACL reconstruction. J Orthop Sports Phys Ther. 2011;41(6):377–87. https://doi.org/10.2519/jospt.2011.3547.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Nagai T, Schilaty ND, Laskowski ER, Hewett TE. Hop tests can result in higher limb symmetry index values than isokinetic strength and leg press tests in patients following ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):816–22. https://doi.org/10.1007/s00167-019-05513-3.

    Article  PubMed  Google Scholar 

  121. Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):1271–88. https://doi.org/10.1007/s40279-016-0666-y.

    Article  PubMed  Google Scholar 

  122. Neto T, Sayer T, Theisen D, Mierau A. Functional brain plasticity associated with ACL injury: a scoping review of current evidence. Neural Plast. 2019;2019. https://doi.org/10.1155/2019/3480512.

  123. Norte GE, Hertel J, Saliba SA, Diduch DR, Hart JM. Quadriceps neuromuscular function in patients with anterior cruciate ligament reconstruction with or without knee osteoarthritis: a cross-sectional study. J Athl Train. 2018;53(5):475–85. https://doi.org/10.4085/1062-6050-102-17.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ochi M, Iwasa J, Uchio Y, Adachi N, Kawasaki K. Induction of somatosensory evoked potentials by mechanical stimulation in reconstructed anterior cruciate ligaments. J Bone Jt Surg Br. 2002;84(5):761–6. https://doi.org/10.1302/0301-620x.84b5.12584.

    Article  CAS  Google Scholar 

  125. Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y. The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Jt Surg Br. 1999;81(5):902–6. https://doi.org/10.1302/0301-620x.81b5.9202.

    Article  CAS  Google Scholar 

  126. Øiestad BE, Holm I, Engebretsen L, Risberg MA. The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10–15 years after anterior cruciate ligament reconstruction. Br J Sports Med. 2011;45(7):583–8. https://doi.org/10.1136/bjsm.2010.073130.

    Article  PubMed  Google Scholar 

  127. Oliver JL, Lloyd RS. Long-term athlete development and trainability during childhood: a brief review. Prof Strength Cond J. 2012;26:19–24.

    Google Scholar 

  128. Pascua LA, Wulf G, Lewthwaite R. Additive benefits of external focus and enhanced performance expectancy for motor learning. J Sports Sci. 2015;33(1):58–66. https://doi.org/10.1080/02640414.2014.922693.

    Article  PubMed  Google Scholar 

  129. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78. https://doi.org/10.1177/0363546510376053.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HB, Rakic P, Kostović I. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci. 2011;108(32):13281–6. https://doi.org/10.1073/pnas.1105108108.

    Article  PubMed  Google Scholar 

  131. Peters BD, Szeszko PR, Radua J, Ikuta T, Gruner P, DeRosse P, Zhang J-P, Giorgio A, Qiu D, Tapert SF. White matter development in adolescence: diffusion tensor imaging and meta-analytic results. Schizophr Bull. 2012;38(6):1308–17. https://doi.org/10.1093/schbul/sbs054.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Petushek EJ, Sugimoto D, Stoolmiller M, Smith G, Myer GD. Evidence-based best-practice guidelines for preventing anterior cruciate ligament injuries in young female athletes: a systematic review and meta-analysis. Am J Sports Med. 2019;47(7):1744–53. https://doi.org/10.1177/0363546518782460.

    Article  PubMed  Google Scholar 

  133. Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural excitability alterations after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):665–74. https://doi.org/10.4085/1062-6050-50.1.11.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Porter J, Wu W, Partridge J. Focus of attention and verbal instructions: strategies of elite track and field coaches and athletes. Sport Sci Rev. 2010;19(3–4):77–89. https://doi.org/10.2478/v10237-011-0018-7.

    Article  Google Scholar 

  135. Poulsen E, Goncalves GH, Bricca A, Roos EM, Thorlund JB, Juhl CB. Knee osteoarthritis risk is increased 4–6 fold after knee injury—a systematic review and meta-analysis. Br J Sports Med. 2019;53(23):1454–63. https://doi.org/10.1136/bjsports-2018-100022

    Article  PubMed  Google Scholar 

  136. Powers CM, Fisher B. Mechanisms underlying ACL injury-prevention training: the brain-behavior relationship. J Athl Train. 2010;45(5):513–5. https://doi.org/10.4085/1062-6050-45.5.513.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Prince JS, Laor T, Bean JA. MRI of anterior cruciate ligament injuries and associated findings in the pediatric knee: changes with skeletal maturation. Am J Roentgenol. 2005;185(3):756–62. https://doi.org/10.2214/ajr.185.3.01850756.

    Article  Google Scholar 

  138. Raisbeck L, Yamada M, Diekfuss JA. Focus of attention in trained distance runners. Int J Sports Sci Coach. 2018;13(6):1143–9. https://doi.org/10.1177/1747954118798396.

    Article  Google Scholar 

  139. Raisbeck LD, Diekfuss JA, Wyatt W, Shea JB. Motor imagery, physical practice, and memory: the effects on performance and workload. Percept Mot Skills. 2015;121(3):691–705. https://doi.org/10.2466/23.25.PMS.121c23x6.

    Article  PubMed  Google Scholar 

  140. Raisbeck LD, Wyatt WR, Shea JB. A two process memory-based account for mental and physical practice differences. J Mot Behav. 2012;44(2):115–24. https://doi.org/10.1080/00222895.2012.654525.

    Article  PubMed  Google Scholar 

  141. Rossini PM, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, Dimitrijević M, Hallett M, Katayama Y, Lücking C. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92. https://doi.org/10.1016/0013-4694(94)90029-9.

    Article  CAS  PubMed  Google Scholar 

  142. Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ. Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech (Bristoal, Avon). 2007;22(6):681–8. https://doi.org/10.1016/j.clinbiomech.2007.03.001.

    Article  PubMed  Google Scholar 

  143. Shah VM, Andrews JR, Fleisig GS, McMichael CS, Lemak LJ. Return to play after anterior cruciate ligament reconstruction in National Football League athletes. Am J Sports Med. 2010;38(11):2233–9. https://doi.org/10.1177/0363546510372798.

    Article  PubMed  Google Scholar 

  144. Sibley BA, Etnier JL. The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci. 2003;15(3):243–56. https://doi.org/10.1123/PES.15.3.243.

    Article  Google Scholar 

  145. Silfies SP, Vendemia JM, Beattie PF, Stewart JC, Jordon M. Changes in brain structure and activation may augment abnormal movement patterns: an emerging challenge in musculoskeletal rehabilitation. Pain Med. 2017;18(11):2051–4. https://doi.org/10.1093/pm/pnx190.

    Article  PubMed  Google Scholar 

  146. Silva F, Ribeiro F, Oliveira J. Effect of an accelerated ACL rehabilitation protocol on knee proprioception and muscle strength after anterior cruciate ligament reconstruction. Arch Exerc Health Dis. 2012;3:139–44. https://doi.org/10.5628/aehd.v3i1-2.113.

    Article  Google Scholar 

  147. Soderstrom NC, Bjork RA. Learning versus performance: an integrative review. Perspect Psychol Sci. 2015;10(2):176–99. https://doi.org/10.1177/1745691615569000.

    Article  PubMed  Google Scholar 

  148. Spear LP. Adolescent neurodevelopment. J Adolesc Health. 2013;52(2):S7–13. https://doi.org/10.1016/j.jadohealth.2012.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Subramanian SK, Sharma VK, Arunachalam V, Radhakrishnan K, Ramamurthy S. Effect of structured and unstructured physical activity training on cognitive functions in adolescents—a randomized control trial. J Clin Diagn Res. 2015;9(11):Cc04–Cc09. https://doi.org/10.7860/jcdr/2015/14881.6818.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943–8. https://doi.org/10.1177/0363546507299532.

    Article  PubMed  Google Scholar 

  151. Treacy S, Barron O, Brunet M, Barrack R. Assessing the need for extensive supervised rehabilitation following arthroscopic ACL reconstruction. Am J Orthop (Belle Mead, NJ). 1997;26(1):25–9.

    CAS  Google Scholar 

  152. Tsai L-C, Powers CM. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(2):423–9. https://doi.org/10.1177/0363546512471184.

    Article  PubMed  Google Scholar 

  153. Valeriani M, Restuccia D, Lazzaro VD, Franceschi F, Fabbriciani C, Tonali P. Central nervous system modifications in patients with lesion of the anterior cruciate ligament of the knee. Brain. 1996;119(5):1751–62. https://doi.org/10.1093/brain/119.5.1751.

    Article  PubMed  Google Scholar 

  154. van der Graaff E, Hoozemans M, Pasteuning M, Veeger D, Beek PJ. Focus of attention instructions during baseball pitching training. Int J Sports Sci Coach. 2018;13(3):391–7. https://doi.org/10.1177/1747954117711095.

    Article  Google Scholar 

  155. van Duijvenvoorde ACK, Achterberg M, Braams BR, Peters S, Crone EA. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. Neuroimage. 2016;124(Pt A):409–20. https://doi.org/10.1016/j.neuroimage.2015.04.069.

    Article  PubMed  Google Scholar 

  156. Walden M, Hagglund M, Magnusson H, Ekstrand J. ACL injuries in men's professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br J Sports Med. 2016;50(12):744–50. https://doi.org/10.1136/bjsports-2015-095952.

    Article  PubMed  Google Scholar 

  157. Welling W, Benjaminse A, Lemmink K, Gokeler A. Passing return to sports tests after ACL reconstruction is associated with greater likelihood for return to sport but fail to identify second injury risk. Knee. 2020;27(3):949–57. https://doi.org/10.1016/j.knee.2020.03.007.

    Article  PubMed  Google Scholar 

  158. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–76. https://doi.org/10.1177/0363546515621554.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77–104. https://doi.org/10.1080/1750984X.2012.723728.

    Article  Google Scholar 

  160. Wulf G, Lewthwaite R. Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev. 2016;23:1382–414. https://doi.org/10.3758/s13423-015-0999-9.

    Article  PubMed  Google Scholar 

  161. Wulf G, Lewthwaite R, Cardozo P, Chiviacowsky S. Triple play: additive contributions of enhanced expectancies, autonomy support, and external attentional focus to motor learning. Q J Exp Psychol. 2018;71(4):824–31. https://doi.org/10.1080/17470218.2016.1276204.

    Article  Google Scholar 

  162. Yamada M, Diekfuss JA, Raisbeck L. Motor behavior literature fails to translate: a preliminary investigation into coaching and focus of attention in recreational distance runners. Int J Exerc Sci. 2020;13(5):789–801.

    PubMed  PubMed Central  Google Scholar 

  163. Zarzycki R, Morton SM, Charalambous CC, Marmon A, Snyder-Mackler L. Corticospinal and intracortical excitability differ between athletes early after ACLR and matched controls. J Orthop Res. 2018;36(11):2941–8. https://doi.org/10.1002/jor.24062.

    Article  PubMed  Google Scholar 

  164. Zbrojkiewicz D, Vertullo C, Grayson JE. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med J Aust. 2018;208(8):354–8.

    Article  Google Scholar 

  165. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010;126(3):e678–686686. https://doi.org/10.1542/peds.2010-0059.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jed A. Diekfuss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diekfuss, J.A., Hogg, J.A., Grooms, D.R. et al. Can We Capitalize on Central Nervous System Plasticity in Young Athletes to Inoculate Against Injury?. J. of SCI. IN SPORT AND EXERCISE 2, 305–318 (2020). https://doi.org/10.1007/s42978-020-00080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-020-00080-3

Keywords

Navigation