Skip to main content
Log in

Vegetation community changes in European woodlands amid a changing climate: a palaeoecological modelling perspective

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Climate has an important role in shaping the composition and structure of woodlands. There is considerable uncertainty regarding how woodlands will respond to climate change over the next hundred years. To better understand likely responses to contemporary climate change, this paper analyses taxonomic richness, evenness and community similarity in palaeoecological data from 31 European woodlands during an abrupt cooling and warming event c. 8200 years ago. Repeated measures ANOVAs demonstrated there was no significant overall difference in richness or community evenness over time. A single significant pairwise contrast was found (richness decreased as climate warmed) but was short-lived, indicating that high-level effects were temporary. However, analysis of species turnover measured using community similarity revealed substantial changes (only 24% of species remained at some sites after climatic change), indicating that the actual species within that community had altered. General(ised) linear models showed variation in the direction and magnitude of community change was not related to the broadscale biogeographical variables of latitude, longitude or altitude. Our research has several important implications for practitioners involved in community ecology research and woodland management. Although site-level richness is largely unaffected, we caution that there will be considerable species turnover in woodlands as the climate warms. As species turnover at individual sites will have a negligible effect if driven by localised random processes, we recommend practitioners to consider long-term gamma diversity wherever possible. This shifts focus towards landscape-scale approaches that span generations rather than the typical 3–5-year span of funding, management plans and political cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alley, R., & Ágústsdóttir, A. M. (2005). The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews, 24, 1123–1149. https://doi.org/10.1016/j.quascirev.2004.12.004

    Article  Google Scholar 

  • Alley, R. B., Mayewski, P. A., Sowers, T., Stuiver, M., Taylor, K. C., & Clark, P. U. (1997). Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25(6), 483. https://doi.org/10.1130/0091-7613(1997)025%3C0483:HCIAPW%3E2.3.CO;2

    Article  Google Scholar 

  • Ammann, B. (1985). Introduction and palynology: Vegetational history and core correlation at Lobsigensee (Swiss Plateau). In: Lobsigensee - Late-Glacial and Holocene environments of a lake on the central Swiss Plateau. Dissertationes Botanicae, 87:127–170.

  • Anderson, K. J., Allen, A. P., Gillooly, J. F., & Brown, J. H. (2006). Temperature-dependence of biomass accumulation rates during secondary succession. Ecological Letters, 9, 673–682. https://doi.org/10.1111/j.1461-0248.2006.00914.x

    Article  Google Scholar 

  • Bigler, C., Larocque, I., Peglar, S. M., Birks, H. J. B., & Hall, R. I. (2002). Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. The Holocene, 12, 481–496.

    Article  Google Scholar 

  • Birks, H. J. B. (1988). Long-term ecological change in the British uplands. In M. B. Usher & D. B. A. Thompson (Eds.), Ecological change in the uplands (pp. 37–53). Blackwell Scientific Publications.

  • Bjune, A. E. (2004). Holocene vegetation history and tree-line changes on a north-south transect crossing major climate gradients in southern Norway: Evidence from pollen and plant macrofossils in lake sediment. Review of Paleobotany and Palynology, 133, 249–275. https://doi.org/10.1016/j.revpalbo.2004.10.005

    Article  Google Scholar 

  • Bjune, A. E., Birks, H. J. B., Peglar, S. M., & Odland, A. (2010). Developing a modern pollen-climate calibration data set for Norway. Boreas, 39(4), 674–688. https://doi.org/10.1111/j.1502-3885.2010.00158.x

    Article  Google Scholar 

  • Bjune, A. E., Birks, H. J. B., & Seppä, H. (2004). Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas, 33, 211–223. https://doi.org/10.1111/j.1502-3885.2004.tb01142.x

    Article  Google Scholar 

  • Breshears, D. D., Huxman, T. E., Adams, H. D., Zou, C. B., & Davison, J. E. (2008). Vegetation synchronously leans upslope as climate warms. PNAS, 105(33), 11591–11592. https://doi.org/10.1073/pnas.0806579105

    Article  PubMed  PubMed Central  Google Scholar 

  • Broadmeadow, M. (2002). Climate Change: Impacts on UK forests. Forestry Commission Bulletin, 125, 1–198.

    Google Scholar 

  • Broadmeadow, M. S. J., Webber, J. F., Ray, D., & Berry, P. M. (2009). An assessment of likely future impacts of climate change on UK forests. In D. J. Read, P. H. Freer-Smith, J. I. L. Morison, N. Hanley, C. C. West, & P. Snowdon (Eds.), Combating climate change - a role for UK forests. An assessment of the potential of the UK’s trees and woodlands to mitigate and adapt to climate change. The Stationery Office.

  • Bullock, C., Hawe, J., & Little, D. (2014). Realising the ecosystem-service value of native woodland in Ireland. New Zealand Journal of Forestry Science, 44(S1), S4. https://doi.org/10.1186/1179-5395-44-S1-S4

    Article  Google Scholar 

  • Bunting, M. J. (2002). Detecting woodland remnants in cultural landscapes: modern pollen deposition around small woodlands in northwest Scotland. The Holocene, 12(3), 291–301.

    Article  Google Scholar 

  • Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

    Article  Google Scholar 

  • Cairns, J., Jr. (2004). Ecological tipping points: A major challenge for experimental sciences. Asian Journal of Experimental Sciences, 18(1), 1–16.

    Google Scholar 

  • Cavers, S., & Cottrell, J. E. (2015). The basis of resilience in forest tree species and its use in adaptive forest management in Britain. Forestry: an International Journal of Forest Research, 88(1), 13–26.

    Article  Google Scholar 

  • Chaideftou, E., Kallimanis, A. S., Bergmeier, E., & Dimopoulos, P. (2012). How does plant species composition change from year to year? A case study from the herbaceous layer of a submediterranean oak woodland. Community Ecology, 13(1), 88–96. https://doi.org/10.1556/ComEc.13.2012.1.11

    Article  Google Scholar 

  • Chambers, F., Crowle, A., Daniell, J., Mauquoy, D., McCarroll, J., Sanderson, N., et al. (2017). Ascertaining the nature and timing of mire degradation: Using palaeoecology to assist future conservation management in Northern England. AIMS Environmental Science, 4(1), 54–82. https://doi.org/10.3934/environsci.2017.1.54

    Article  CAS  Google Scholar 

  • Chase, J. M., Leibold, M. A., Downing, A. L., & Shurin, J. B. (2000). The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology, 81, 2485–2497. https://doi.org/10.1890/0012-9658(2000)081[2485:TEOPHA]2.0.CO;2

    Article  Google Scholar 

  • Christensen, J. H., & Christensen, O. B. (2007). A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 7–30. https://doi.org/10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Collins, P. M., Davis, B. A. S., & Kaplan, J. O. (2012). The mid-Holocene vegetation of the Mediterranean region and southern Europe, and comparison with the present day. Journal of Biogeography, 39, 1848–1861. https://doi.org/10.1111/j.1365-2699.2012.02738.x

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life [reprinted 1964]. Harvard University.

  • Davies, A. L., & Bunting, M. J. (2010). Applications of palaeoecology in conservation. The Open Ecology Journal, 3(1).

  • Davis, B. A. S., & Stevenson, A. C. (2007). The 8.2 ky event and early-mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain. Quaternary Science Reviews, 26, 1695–1712. https://doi.org/10.1016/j.quascirev.2007.04.007

    Article  Google Scholar 

  • De Boek, H. J., Bloor, J. M. G., Kreyling, J., Ransijn, J. C. G., Nijs, I., Jentsch, A., et al. (2017). Patterns and drivers of biodiversity–stability relationships under climate extremes. Journal of Ecology, 106(3), 890–902. https://doi.org/10.1111/1365-2745.12897

    Article  Google Scholar 

  • Dempsey, B. (2021). Understanding conflicting views in conservation: An analysis of England. Land Use Policy. https://doi.org/10.1016/j.landusepol.2021.105362

    Article  Google Scholar 

  • Donaldson, L., Wilson, R. J., & Maclean, I. M. (2017). Old concepts, new challenges: Adapting landscape-scale conservation to the twenty-first century. Biodiversity and Conservation, 26(3), 527–552. https://doi.org/10.1007/s10531-016-1257-9

    Article  PubMed  Google Scholar 

  • Drescher-Schneider, R. E., de Beaulieu, J. L., Magny, M., Walter-Simonnet, A. V., Bossuet, G., Millet, L., et al. (2007). Vegetation history, climate and human impact over the last 15,000 years at Lago dell’Accesa (Tuscany, Central Italy). Vegetation History and Archaeobotany, 16, 279–299. https://doi.org/10.1007/s00334-006-0089-z

    Article  Google Scholar 

  • Eide, W., Birks, H. H., Bigelow, N. H., Peglar, S. M., & Birks, H. J. B. (2006). Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. Vegetation History and Archaeobotany, 15, 65–85. https://doi.org/10.1007/s00334-005-0025-7

    Article  Google Scholar 

  • Ewel, J. J., & Bigelow, S. W. (1996). Plant life-forms and tropical ecosystem functioning. In G. H. Orians, R. Dirzo, & J. H. Cushman (Eds.), Biodiversity and ecosystem processes in tropical forests. Ecological studies (Analysis and Synthesis). (Vol. 122). Springer, Berlin.

  • Ewel, J., Mazzarino, M. J., & Berishi, C. W. (1991). Tropical soil fertility changes under monocultures and successional communities of different structure. Ecological Applications, 1, 289–302. https://doi.org/10.2307/1941758

    Article  PubMed  Google Scholar 

  • Fonseca, C. R., & Ganade, G. (2001). Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology, 89, 118–125. https://doi.org/10.1046/j.1365-2745.2001.00528.x

    Article  Google Scholar 

  • Frank, D. A., & McNaughton, S. J. (1991). Stability increases with diversity in plant communities: Empirical evidence from the 1988 Yellowstone drought. Oikos, 62, 360–362. https://doi.org/10.2307/3545501

    Article  Google Scholar 

  • Fyfe, R. M., de Beaulieu, J. L., Binney, H., Brewer, S., Le Flao, A., et al. (2009). The European Pollen Database: Past efforts and current activities. Vegetation History and Archaeobotany, 18, 417–424. https://doi.org/10.1007/s00334-009-0215-9

    Article  Google Scholar 

  • Giesecke, T. (2005a). Holocene forest development in the central Scandes Mountains, Sweden. Vegetation History and Archaeobotany, 13, 133–147. https://doi.org/10.1007/s00334-005-0070-2

    Article  Google Scholar 

  • Giesecke, T. (2005b). Holocene dynamics of the southern boreal forest in Sweden. The Holocene, 15, 858–872.

    Article  Google Scholar 

  • Goldberg, E., Kirby, K., Hall, J., & Latham, J. (2007). The ancient woodland concept as a practical conservation tool in Great Britain. Journal for Nature Conservation, 15(2), 109–119. https://doi.org/10.1016/j.jnc.2007.04.001

    Article  Google Scholar 

  • Graae, B. J. (2000). The effect of landscape fragmentation and forest continuity on forest floor species in two regions of Denmark. Journal of Vegetation Science, 11(6), 881–892. https://doi.org/10.2307/3236558

    Article  Google Scholar 

  • Grant, M. J., Hughes, P. D. M., & Barber, K. E. (2009). Early to mid-Holocene vegetation-fire interactions and responses to climatic change at Cranes Moor, New Forest. In R. M. Briant, M. R. Bates, R. T. Hosfield, & F. F. Wenban-Smith (Eds.), The quaternary of the Solent Basin and West Sussex raised beaches (pp. 198–214). Quaternary Research Association.

  • Guerin, G. R., Biffin, E., & Lowe, A. J. (2013). Spatial modelling of species turnover identifies climate ecotones, climate change tipping points and vulnerable taxonomic groups. Ecography, 36(10), 1086–1096. https://doi.org/10.1111/j.1600-0587.2013.00215.x

    Article  Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. PNAS, 103, 14288–14293. https://doi.org/10.1073/pnas.0606291103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellman, S., Bunting, M. J., & Gaillard, M. J. (2009). Relevant source area of pollen in patchy cultural landscapes and signals of anthropogenic landscape disturbance in the pollen record: A simulation approach. Review of Palaeobotany and Palynology., 153(3–4), 245–258. https://doi.org/10.1016/j.revpalbo.2008.08.006

    Article  Google Scholar 

  • Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I. et al. (2018) Impacts of 1.5ºC global warming on natural and human systems. in Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC. Available at: https://www.ipcc.ch/sr15/chapter/chapter-3/

  • Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B., & Hermy, M. (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecology Letters, 5(4), 525–530. https://doi.org/10.1046/j.1461-0248.2002.00346.x

    Article  Google Scholar 

  • Hooper, D., Adair, E., Cardinale, B., Byrnes, J. E. K., Hungate, B. A., & Matulich, K. L. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell, S. P., & Foster, R. B. (1986). Biology, chance and history and the structure of tropical rain forest tree communities. In J. Diamond & T. J. Case (Eds.), Community Ecology (pp. 314–329). Harper and Row.

  • Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574–577. https://doi.org/10.1038/nature15374

    Article  CAS  PubMed  Google Scholar 

  • Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Ives, A. R., Klug, J. L., & Gross, K. (2000). Stability and species richness in complex communities. Ecological Letters, 3, 399–411. https://doi.org/10.1046/j.1461-0248.2000.00144.x

    Article  Google Scholar 

  • Jahns, S. (2000). Late-glacial and Holocene woodland dynamics and land-use history of the Lower Oder valley, north-eastern Germany, based on two, AMS 14C-dated, pollen profiles. Vegetation History and Archaeobotany, 9, 111–123. https://doi.org/10.1007/BF01300061

    Article  Google Scholar 

  • Jahns, S. (2007). Palynological investigations into the Late Pleistocene and Holocene history of vegetation and settlement at the Löddigsee, Mecklenburg, Germany. Vegetation History Archaeobotany, 16, 157–169. https://doi.org/10.1007/s00334-006-0074-6

    Article  Google Scholar 

  • Joannin, S., Brugiapaglia, E., de Beaulieu, J.-L., Bernardo, L., Magny, M., Peyron, O., et al. (2012). Pollen-based reconstruction of Holocene vegetation and climate in southern Italy: The case of Lago Trifoglietti. Climate of the past, 8, 1973–1996. https://doi.org/10.5194/cp-8-1973-2012

    Article  Google Scholar 

  • Jones, J. P. (2011). Monitoring species abundance and distribution at the landscape scale. Journal of Applied Ecology, 48, 9–13. https://doi.org/10.1111/j.1365-2664.2010.01917.x

    Article  Google Scholar 

  • van der Knaap, W.O., & van Leeuwen, J.F.N. (2001). Vegetationsgeschichte und menschlicher Einfluss in der Umgebung des Bibersees zwischen 2600 und 50 v. Chr. In: Gnepf Horisberger, U., and Hämmerle, S. (Ed.), Cham- Oberwil, Hof (Kanton Zug - Befunde und Funde aus der Glockenbecherkultur und der Bronzezeit. Antiqua 33 (Veröffentlichung der Schweizerischen Gesellschaft für Ur- und Frühgeschichte) (pp.194–199).

  • Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J.-M., & Grachev, A. M. (2007). Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews, 26, 9–10. https://doi.org/10.1016/j.quascirev.2007.01.009

    Article  Google Scholar 

  • Lamanna, C., Blonder, B., Violle, C., Kraft, N. J., Sandel, B., Šímová, I., et al. (2014). Functional trait space and the latitudinal diversity gradient. PNAS, 111(38), 13745–13750. https://doi.org/10.1073/pnas.1317722111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton, J. H. (1994). What do species do in ecosystems? Oikos, 71, 367–374.

    Article  Google Scholar 

  • Lawton, J. H., Brotherton, P. N. M., Brown, V. K., Elphick, C., Fitter, A. H., Forshaw, J., et al. (2010). Making space for nature: A review of England’s wildlife sites and ecological network. Defra.

  • Legendre, P., & Legendre, L. (1998). Numerical ecology (p. 852). Elsevier.

  • MacArthur, R. H. (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533–536. https://doi.org/10.2307/1929601

    Article  Google Scholar 

  • Madani, N., Kimball, J. S., Ballantyne, A. P., Affleck, D. L. R., van Bodegom, P. M., Reich, P. B., et al. (2018). Future global productivity will be affected by plant trait response to climate. Scientific Reports, 8, 2870. https://doi.org/10.1038/s41598-018-21172-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C., & Haywood, A. M. (2017). The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth and Planetary Science Letters, 473, 205–214. https://doi.org/10.1016/j.epsl.2017.06.011

    Article  Google Scholar 

  • Matlack, G. R. (1994). Vegetation dynamics of the forest edge–trends in space and successional time. Journal of Ecology, 82, 113–123. https://doi.org/10.2307/2261391

    Article  Google Scholar 

  • McCarthy, M. A., Thompson, C. J., & Possingham, H. P. (2005). Theory for designing nature reserves for single species. The American Naturalist, 165(2), 250–257. https://doi.org/10.1086/427297

    Article  PubMed  Google Scholar 

  • McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology and Evolution, 30, 2. https://doi.org/10.1016/j.tree.2014.11.006

    Article  Google Scholar 

  • McNaughton, S. J. (1977). Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. The American Naturalist, 111, 515–525. https://doi.org/10.1086/283181

    Article  Google Scholar 

  • Moar, N. T. (1969). Late Weichselian and Flandrian pollen diagrams from south-west Scotland. New Phytologist, 68, 433–467. https://doi.org/10.1111/j.1469-8137.1969.tb06456.x

    Article  Google Scholar 

  • Morales-Molino, C., & García-Antón, M. (2014). Vegetation and fire history since the last glacial maximum in an inland area of the western Mediterranean Basin (Northern Iberian Plateau, NW Spain). Quaternary Research, 81, 63–77. https://doi.org/10.1016/j.yqres.2013.10.010

    Article  Google Scholar 

  • Nakagawa, T. (1998). Etudes palynologiques dans les Alpes Françaises centrales et méridionales: histoire de la végétation Tardiglaciaire et Holocène [Pollen studies in the central meridional French Alps: Lateglacial and Holocene vegetation history] PhD. Dissertation of Biology and Ecology, University of Marseille III (1998):1-211.

  • NASA/Goddard Institute for Space Studies (GISS) (2021) Data relating to Global Land-Ocean Temperature Index. Available from: https://data.giss.nasa.gov/gistemp/graphs/graph_data/Global_Mean_Estimates_based_on_Land_and_Ocean_Data/graph.txt Accessed: 04 March 2021

  • Nicol-Pichard, S., & Dubard, M. (1998). Reconstruction of Late-glacial and Holocene environments in southeast France based on the study of a 66-m long core from Biot, Alpes Maritimes. Vegetation History and Archaeobotany, 7, 11–15. https://doi.org/10.1007/BF01393413

    Article  Google Scholar 

  • Olsson, F., Gaillard, M. J., Lemdahl, G., Greisman, A., Lanos, P., Marguerie, D., et al. (2010). A continuous record of fire covering the last 10,500 calendar years from southern Sweden—the role of climate and human activities. Palaeogeography Palaeoclimatology Palaeoecology, 291, 128–141. https://doi.org/10.1016/j.palaeo.2009.07.013

    Article  Google Scholar 

  • Pálinkás, M., (2018). Ecological responses to climate change at biogeographical boundaries. In Pure and Applied Biogeography (ed Hufnagel L) Croatia: In: Tech, 31–55.

  • Peros, M. C., & Gajewski, K. (2008). Testing the reliability of pollen-based diversity estimates. Journal of Paleolimnology, 40, 357–368. https://doi.org/10.1007/s10933-007-9166-2

    Article  Google Scholar 

  • Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological resilience, biodiversity, and scale. Ecosystems, 1, 6–18. https://doi.org/10.1007/s100219900002

    Article  Google Scholar 

  • Pimm, S., Jenkins, C. N., Brooks, A. R., Gittleman, T. M., Joppa, J. L., Raven, L. N., et al. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1.

    Article  Google Scholar 

  • Pokorn, P. (2002). A high-resolution record of Late-Glacial and Early-Holocene climatic and environmental change in the Czech Republic. Quaternary International, 91, 101–122. https://doi.org/10.1016/S1040-6182(01)00105-7

    Article  Google Scholar 

  • Prasad, S., Witt, A., Kienel, U., Dulski, P., Bauer, E., & Yancheva, G. (2009). The 8.2 ka event: Evidence for seasonal differences and the rate of climate change in western Europe. Global and Planetary Change, 67(3–4), 218–226.

    Article  Google Scholar 

  • Quine, C., Cahalan, C., Hester, A., Humphrey, J., Kirby, K., Moffat, A., et al. (2011) Woodlands. UK national ecosystem assessment Cambridge, UK: UNEP-WCMC.

  • Rahel, F. J. (2000). Homogenization of fish faunas across the United States. Science, 288, 854–856. https://doi.org/10.1126/science.288.5467.854

    Article  CAS  PubMed  Google Scholar 

  • Ray, D., Morison, J. Broadmeadow, M. (2010) Climate change: Impacts and adaptation in England's woodlands England, F.C. (Ed.), p. Research Note FCRN201

  • Reimer, P. (2020). Composition and consequences of the IntCal20 radiocarbon calibration curve. Quaternary Research, 96, 22–27. https://doi.org/10.1017/qua.2020.42

    Article  CAS  Google Scholar 

  • Rösch, M. (1989). Pollenprofil Breitnau-Neuhof: Zum zeitlichen Verlauf der holozanen Vegetationsentwicklung im sudlichen Schwarzwald. Carolinea, 47, 15–24.

    Google Scholar 

  • Rotherham, I. D. (2011). A landscape history approach to the assessment of ancient woodlands. Woodlands: ecology, management and conservation. Nova Science Publisher.

  • Rull, V. (2010). Ecology and palaeoecology, two approaches, one objective. The Open Ecology Journal, 3, 1–5. https://doi.org/10.2174/1874213001003020001

    Article  Google Scholar 

  • Rull, V. (2012). Community ecology: Diversity and dynamics over time. Community Ecology, 13, 102–116.

    Article  Google Scholar 

  • Rull, V., & Vegas-Vilarrúbia, T. (2011). What is long-term in ecology? Trends in Ecology and Evolution, 26, 3–4. https://doi.org/10.1016/j.tree.2010.10.002

    Article  PubMed  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(379–423), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  • Silvertown, J. (1985). History of a latitudinal diversity gradient: Woody plants in Europe 13,000–1000 years B.P. Journal of Biogeography, 12(6), 519–525. https://doi.org/10.2307/2844907

    Article  Google Scholar 

  • Stuiver, M., Reimer, P. J., & Braziunas, T. F. (1998). High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40, 1127–1151.

    Article  CAS  Google Scholar 

  • Swallow, K. A., & Goodenough, A. E. (2017). Double-edged effect? Impact of dual edge proximity on the distribution of ancient woodland indicator plant species in a fragmented habitat. Community Ecology, 18(1), 31–36. https://doi.org/10.1556/168.2017.18.1.4

    Article  Google Scholar 

  • Tantau, I., Reille, M., de Beaulieu, J. L., & Farcas, S. (2006). Late Glacial and Holocene vegetation history in the southern part of Transylvania (Romania): Pollen analysis of two sequences from Avrig. Journal of Quaternary Science, 21(1), 49–61. https://doi.org/10.1002/jqs.937

    Article  Google Scholar 

  • Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grasslands ecosystems. Nature, 379, 718–720. https://doi.org/10.1038/379718a0

    Article  CAS  Google Scholar 

  • Tinsley, H. M., & Smith, R. T. (1974). Surface pollen studies across a woodland/heath transition and their application to the interpretation of pollen diagrams. New Phytologist, 73, 547–565. https://doi.org/10.1111/j.1469-8137.1974.tb02132.x

    Article  Google Scholar 

  • Velle, G., Larsen, J., Eide, W., Peglar, S. M., & Birks, H. J. B. (2005). Holocene environmental history and climate of Råtåsj¢en, a low-alpine lake in south-central Norway. Journal of Paleolimnology, 33, 129–153. https://doi.org/10.1007/S10933-004-2689-X

    Article  Google Scholar 

  • Vera, F. W. M. (2000). Grazing ecology and forest history. CABI Publishing.

  • Veski, S. (1998). Vegetation history, human impact and palaeogeography of West Estonia. Pollen analytical studies of lake and bog sediments. Doctoral Dissertation. Striae, 38:1-119.

  • Veski, S., Seppä, H., & Ojala, A. E. K. (2004). Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology, 32(8), 681–684. https://doi.org/10.1130/G20683.1

    Article  Google Scholar 

  • Vogel, A., Scherer-Lorenzen, M., & Weigelt, A. (2012). Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE, 7, 5. https://doi.org/10.1371/journal.pone.0036992

    Article  CAS  Google Scholar 

  • Vuorela, I. (2010) Pollen profile SYRJALAN, Syrjälänsuo, Finland. European Pollen Database (EPD), PANGAEA

  • Wahlmüller, N. (1985). Beiträge zur Vegetationsgeschichte Tirols V: Nordtiroler Kalkalpen. Ber. nat.-med. Verein Innsbruck, 72, 101–144.

    Google Scholar 

  • Whitehouse, N. J., & Smith, D. N. (2004). ‘“Islands”’ in Holocene forests: Implications for forest openness, landscape clearance and ‘“culture-steppe”’ species. Environmental Archaeology, 9, 203–212. https://doi.org/10.1179/env.2004.9.2.199

    Article  Google Scholar 

  • Whitehouse, N. J., & Smith, D. (2010). How fragmented was the British Holocene wildwood? Perspectives on the “Vera” grazing debate from the fossil beetle record. Quaternary Science Reviews, 29(3–4), 539–553. https://doi.org/10.1016/j.quascirev.2009.10.010

    Article  Google Scholar 

  • Wiersma, A. P., & Jongma, J. I. (2010). A role for icebergs in the 8.2 ka climate event. Climate Dynamics, 35, 535–549. https://doi.org/10.1007/s00382-009-0645-1

    Article  Google Scholar 

  • Willis, K. J., & Birks, H. J. B. (2006). What is natural? The need for a long-term perspective in biodiversity conservation. Science, 314, 1261–1265.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia C. Webb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, J.C., Goodenough, A.E. Vegetation community changes in European woodlands amid a changing climate: a palaeoecological modelling perspective. COMMUNITY ECOLOGY 22, 319–330 (2021). https://doi.org/10.1007/s42974-021-00057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00057-4

Keywords

Navigation