Skip to main content
Log in

Investigating the trophic ecology of freshwater fish communities from central and eastern Indian streams using stable isotope analysis

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Stable isotope analysis (SIA) has been used over the last decade to decipher trophic relationships between organisms, especially in freshwater and marine systems. Using SIA to understand food web patterns in stream communities, we present a first time investigation on trophic structure of fish communities from two ecoregions in eastern and central India. This study is based on pooled pre-monsoon samples from each region, which were analyzed for their isotopic carbon and nitrogen. Fish dietary data from secondary literature and available databases based on their known gut content analysis were included for calculating average food web lengths. Despite being located within the tropics and therefore from similar ecological and climatic conditions, subtle differences were observed in the food web shape and food web lengths of fish communities from the two regions. Food web length was longer in central Indian streams compared to eastern Indian streams. Higher trophic diversity and lower trophic redundancy among fishes of central India were indicative of specialized feeding. On the other hand, a greater utilization of diverse basal resources indicated feeding niche overlap and greater omnivory among fishes in eastern India. Benthopelagic fishes were found to be the largest guild and occupied the largest area as well as maximum carbon and nitrogen ranges. In addition to providing an understanding of the trophic patterns in tropical stream ecosystems, our work serves as a baseline for future studies on trophic structure in Indian stream fish communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References:

  • Aadland, L. P. (1993). Stream habitat types: their fish assemblages and relationship to flow. North American Journal of Fisheries Management, 13(4), 790–806

    Article  Google Scholar 

  • Agarwal, R., Kumar, R., & Behari, J. R. (2007). Mercury and lead content in fish species from the river Gomti, Lucknow, India, as biomarkers of contamination. Bulletin of Environment Contamination and Toxicology, 78(2), 118–122

    Article  CAS  Google Scholar 

  • Akbaripasand, A., & Closs, G. P. (2018). Effects of food supply and stream physical characteristics on habitat use of a stream-dwelling fish. Ecology of Freshwater Fish, 27(1), 270–279

    Article  Google Scholar 

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology: structure and function of running waters. (2nd ed.). Springer.

    Book  Google Scholar 

  • Arim, M., Bozinovic, F., & Marquet, P. A. (2007). On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos, 116, 1524–1530

    Article  Google Scholar 

  • Arthi, T., Nagarajan, S., & Sivakumar, A. A. (2011). Food and feeding habits of two freshwater fishes, Ompok bimaculatus and O. malabaricus of river Amaravathy Tamil Nadu. The Bioscan, 6(3), 417–420

    Google Scholar 

  • Badola, S. P., & Singh, H. R. (1980). Food and feeding habits of fishes of the genera Tor, Puntius and Barilius. Proceedings of Indian National Science and Academy, 46, 58–62

    Google Scholar 

  • Baumgartner, L. J. (2007). Diet and feeding habits of predatory fishes upstream and downstream of a low-level weir. Journal of Fish Biology, 70, 879–894

    Article  Google Scholar 

  • Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A., & Macleod, H. (2004). Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology, 73, 1007–1012

    Article  Google Scholar 

  • Bhathal, B., & Pauly, D. (2008). ‘Fishing down marine food webs’ and spatial expansion of coastal fisheries in India, 1950–2000. Fisheries Research, 91(1), 26–34

    Article  Google Scholar 

  • Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., & Forister, M. L. (2003). The ecology of individuals: Incidence and implications of individual specialization. The American Naturalist, 161, 1–28

    Article  PubMed  Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Towards a metabolic theory of ecology. Ecology, 85, 1771–1789

    Article  Google Scholar 

  • Bührnheim, C. M. (2003). Fernandes CC (2003) Structure of fish assemblages in Amazonian rain-forest streams: Effects of habitats and locality. Copeia, 2, 255–262

    Article  Google Scholar 

  • Delong, M. D. (2005). Upper Mississippi River Basin. In A. C. Benke & C. E. Cushing (Eds.), Rivers of North America.Burlington: Elsevier Academic Press.

    Google Scholar 

  • DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica Et Cosmochimica Acta, 45, 341–351

    Article  CAS  Google Scholar 

  • Doi, H. (2009). Spatial patterns of autochthonous and allochthonous resources in aquatic food webs. Population Ecology, 51(1), 57–64

    Article  Google Scholar 

  • Douglas, M. M., Bunn, S. E., & Davies, P. M. (2005). River and wetland food webs in Australia’s wet-dry tropics: General principles and implications for management. Marine and Freshwater Research, 56, 329–342

    Article  Google Scholar 

  • Dudgeon, D. (2011). Asian river fishes in the Anthropocene: Threats and conservation challenges in an era of rapid environmental change. Journal of Fish Biology, 79(6), 1487–1524

    Article  CAS  PubMed  Google Scholar 

  • Dudgeon, D., Cheung, F. K., & Mantel, S. K. (2010). Food web structure in small streams: Do we need different models for the tropics? Journal of the North American Benthological Society, 29(2), 395–412

    Article  Google Scholar 

  • Elton, C. S. (1927). Animal Ecology. Sidgwick and Jackson.

    Google Scholar 

  • Finlay, J. C. (2001). Stable-carbon-isotope ratios of river biota: Implications of energy flow in lotic food webs. Ecology, 82, 1052–1064

    Google Scholar 

  • Froese, R., Pauly, D. (Eds.) (2000). FishBase 2000: Concepts designs and data sources ICLARM, Los Baños, Laguna, Philippines

  • González-Bergonzoni, I., Meerhoff, M., Davidson, T. A., Teixeira-de Mello, F., Baattrup-Pedersen, A., & Jeppesen, E. (2012). Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems, 15, 492–503

    Article  Google Scholar 

  • Grubh, A. R. (2004). Winemiller KO (2004) Ontogeny of scale feeding in the Asian glassfish, Chanda nama (Ambassidae). Copeia, 4, 903–907

    Article  Google Scholar 

  • Gupta, S. (2015). An overview on feeding habit, reproductive biology and induced breeding of Ompok bimaculatus (Bloch, 1794). European Journal of Biological Sciences, 7(4), 147–153

    CAS  Google Scholar 

  • Gupta, S., & Banerjee, S. (2014). Food and feeding habit of a freshwater catfish, Mystus tengara (Siluriformes: Bagridae). Journal of Ichthyology, 54(9), 742–748

    Article  Google Scholar 

  • Hammar, J. (2000). Cannibals and parasites: Conflicting regulators of bimodality in high latitude Arctic char Salveinus alpines. Oikos, 88, 33–47

    Article  Google Scholar 

  • Hauer, F. R., & Lamberti, G. (Eds.). (2017). Methods in Stream Ecology, Vol. 1: Ecosystem Structure. Academic Press

  • Huang, I. Y., Lin, Y. S., Chen, C. P., & Hsieh, H. L. (2007). Food web structure of a subtropical headwater stream. Marine and Freshwater Research, 58, 596–607

    Article  Google Scholar 

  • Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology, 22, 415–427

  • Iglesias, C., Meerhoff, M., Johansson, L. S., González-Bergonzoni, I., Mazzeo, N., Pacheco, J. P., Teixeira-de Mello, F., Goyenola, G., Lauridsen, T. L., Søndergaard, M., Davidson, T. A., & Jeppesen, E. (2017). Stable isotope analysis confirms substantial differences between subtropical and temperate shallow lake food webs. Hydrobiologia, 784(1), 111–123

    Article  Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602

    Article  PubMed  Google Scholar 

  • Jaworski, A., & Ragnarsson, S. Á. (2006). Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES Journal of Marine Science, 63(9), 1682–1694

    Article  Google Scholar 

  • Jepsen, D. B., & Winemiller, K. O. (2002). Structure of tropical river food webs revealed by stable isotope ratios. Oikos, 96(1), 46–55

    Article  Google Scholar 

  • Johnson, J. A., & Arunachalam, M. (2012). Feeding habit and food partitioning in a stream fish community of Western Ghats India. Environmental Biology of Fishes, 93(1), 51–60

    Article  Google Scholar 

  • Jowett, I. G., & Richardson, J. (1995). Habitat preferences of common, riverine New Zealand native fishes and implications for flow management. New Zealand Journal of Marine and Freshwater Research, 29(1), 13–23

    Article  Google Scholar 

  • Khan, M. F., & Panikkar, P. (2009). Assessment of impacts of invasive fishes on the food web structure and ecosystem properties of a tropical reservoir in India. Ecological Modelling, 220(18), 2281–2290

    Article  Google Scholar 

  • Kushwaha, S. P. S., & Nandy, S. (2012). Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodiversity and Conservation, 21, 1215–1228

    Article  Google Scholar 

  • Layman, C. A., Arrington, D. A., Montana, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community wide measures of trophic structure? Ecology, 88, 42–48

    Article  PubMed  Google Scholar 

  • Lazzaro, X., Bouvy, M., Ribeiro-Filho, R. A., Oliviera, V. S., Sales, L. T., Vasconcelos, A. R. M., & Mata, M. R. (2003). Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology, 48, 649–668

    Article  Google Scholar 

  • Leibold, M. A. (1995). The niche concept revisited: Mechanistic models and community context. Ecology, 76, 1371–1382

    Article  Google Scholar 

  • Leitão, R. P., Zuanon, J., Mouillot, D., Leal, C. G., Hughes, R. M., Kaufmann, P. R., Ferraz, S. F., & Gardner, T. A. (2018). Disentangling the pathways of land use impacts on the functional structure of fish assemblages in Amazon streams. Ecography, 41(1), 219–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe-McConnell, R. H. (1987). Ecological Studies in Tropical Fish Communities. Cambridge University Press.

    Book  Google Scholar 

  • Meerhoff, M., Clemente, J. M., Teixeira-de Mello, F., Iglesias, C., Pedersen, A. R., & Jeppesen, E. (2007). Can warm climate related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology, 13, 1888–1897

    Article  Google Scholar 

  • Melo, C. E. D., Machado, F. D. A., & Pinto-Silva, V. (2004). Feeding habits of fish from a stream in the savanna of Central Brazil, Araguaia Basin. Neotropical Ichthyology, 2(1), 37–44

    Article  Google Scholar 

  • Minagawa, M., & Wada, E. (1984). Stepwise enrichment of 15N along food chains—further evidence and the relation between d15N and animal age. Geochimica Et Cosmochimica Acta, 48, 1135–1140

    Article  CAS  Google Scholar 

  • Mitu, N. R., & Alam, M. M. (2016). Feeding ecology of a bagrid catfish, Mystus tengara (Hamilton, 1822) in the Tanore wetland of Rajshahi Northwestern Bangladesh. Journal of Applied Ichthyology, 32(3), 448–455

    Article  Google Scholar 

  • Murugesan, P., Purusothaman, S., & Muthuvelu, S. (2012). Trophic level of fishes associated in the trawl by catch from Parangipettai and Cuddalore, Southeast coast of India. Journal of Fisheries and Aquatic Science, 7(1), 29–38

    Article  Google Scholar 

  • Nautiyal, P. (2010). Food chains of Ganga River ecosystems in the Himalayas. Aquatic Ecosystem Health & Management, 13(4), 362–373

    Article  CAS  Google Scholar 

  • Newsome, S. D., & Martı´nez del Rio, C., Bearhop, S., Phillips, D.L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5, 429–436

    Article  Google Scholar 

  • Oscoz, J., Campos, F., Escala, M. C., García-Fresca, C., Leunda, P. M., & Miranda, R. (2005). Diet composition of rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), in the Urederra River (Spain). International Journal of Limnology, 41(1), 27–34

    Article  Google Scholar 

  • Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293–320

    Article  Google Scholar 

  • Pimm, S. L. (1982). Food Webs. Chapman & Hall, London

  • Pimm, S. L., & Lawton, J. H. (1977). Number of trophic levels in ecological communities. Nature, 268(5618), 329–331

    Article  Google Scholar 

  • Post, D. M. (2002a). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718

    Article  Google Scholar 

  • Post, D. M. (2002b). The long and short of food-chain length. Tr Ecol Evol, 17(6), 269–277

    Article  Google Scholar 

  • Post, D., & Takimoto, G. (2007). Proximate structural mechanisms for variation in food-chain length. Oikos, 116(5), 775–782

    Article  Google Scholar 

  • Post, D. M., Pace, M. L., & Hairston, N. G. (2000). Ecosystem size determines food-chain length in lakes. Nature, 405(6790), 1047–1049

    Article  CAS  PubMed  Google Scholar 

  • Power, M. E., Holomuzki, J. R., & Lowe, R. L. (2013). Food webs in Mediterranean rivers. Hydrobiologia, 719(1), 119–136

    Article  Google Scholar 

  • Prasad, G., & Ali, P. A. (2008). Morphology of the diet in the gut of threatened yellow catfish Horabagrus brachysoma (Gunther 1864) at two life stages. Fish Physiology and Biochemistry, 34(4), 385–389

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P. B. (1980). Food and feeding habits of Channa punctata (Bloch) from Guntur. Indian Journal of Fisheries, 27(1 & 2), 123–129

    Google Scholar 

  • Rejomon, G., Nair, M., & Joseph, T. (2010). Trace metal dynamics in fishes from the southwest coast of India. Environment and Monsoon Assess, 167(1–4), 243–255

    Article  CAS  Google Scholar 

  • Rezende, C. F., Lobón-Cerviá, J., Caramaschi, E. P., & Mazzoni, R. (2013). Trophic ecology of two benthivorous fishes in relation to drift and benthos composition in a pristine Serra do Mar stream (Rio de Janeiro, Brazil). Archiv Für Hydrobiologie, 183, 163–175

    Article  Google Scholar 

  • Rosenfeld, J. (2003). Assessing the habitat requirements of stream fishes: An overview and evaluation of different approaches. Transactions of the American Fisheries Society, 132(5), 953–968

    Article  Google Scholar 

  • Ruhi, A., Muñoz, I., Tornés, E., Batalla, R. J., Vericat, D., Ponsati, L., Acuña, V., von Schiller, D., Marcé, R., Bussi, G., et al. (2016). Flow regulation increases food-chain length through omnivory mechanisms in a Mediterranean river network. Freshwater Biology, 61, 1536–1549

    Article  Google Scholar 

  • Sabo, J. L., Finlay, J. C., Kennedy, T., & Post, D. M. (2010). The role of discharge variation in scaling of drainage area and food chain length in rivers. Science, 330(6006), 965–967

    Article  CAS  PubMed  Google Scholar 

  • Saikia, S. K., & Das, D. N. (2009). Feeding ecology of common carp (Cyprinus carpio L.) in a rice–fish culture system of the Apatani plateau (Arunachal Pradesh, India). Aq Ecol, 43(2), 559–568

    Article  Google Scholar 

  • Shukla, R., & Bhat, A. (2017). Environmental drivers of α-diversity patterns in monsoonal tropical stream fish assemblages: A case study from tributaries of Narmada basin India. Environmental Biology of Fishes, 100(7), 749–761

    Article  Google Scholar 

  • Singer, G. A., & Battin, T. J. (2007). Anthropogenic subsidies alter stream consumer–resource stoichiometry, biodiversity, and food chains. Ecological Applications, 17(2), 376–389

    Article  PubMed  Google Scholar 

  • Snelder, T. H., & Lamouroux, N. (2010). Co-variation of fish assemblages, flow regimes and other habitat factors in French rivers. Freshwater Biology, 55(4), 881–892

    Article  Google Scholar 

  • Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., & Semmens, B. X. (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. https://doi.org/10.7717/peerj.5096

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadeboncoeur, Y., Kalff, J., Christoffersen, K., & Jeppesen, E. (2006). Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society, 25, 379–392. https://doi.org/10.1899/0887-3593(2006)25[379:SAADOV]2.0.CO;2

    Article  Google Scholar 

  • Vander Zanden, M. J., & Fetzer, W. W. (2007). Global patterns of aquatic food chain length. Oikos, 116, 1378–1388

    Article  Google Scholar 

  • Vanderklift, M., & Ponsard, S. (2003). Sources of variation in consumer-diet 15N enrichment: A meta-analysis. Oecologia, 136, 169–182

    Article  PubMed  Google Scholar 

  • Vila-Gispert, A., García-Berthou, E., & Moreno-Amich, R. (2002). Fish zonation in a Mediterranean stream: Effects of human disturbances. Aquatic Sciences, 64(2), 163–170

    Article  Google Scholar 

  • Wolff, L. L., Carniatto, N., & Hahn, N. S. (2013). Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil. Neotropical Ichthyology, 11(2), 375–386

    Article  Google Scholar 

  • Zeni, J. O., & Casatti, L. (2014). The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia, 726(1), 259–270

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Prasanta Sanyal and SILIKA lab in IISER Kolkata for mass spectrometry facilities. They also thank Prasenjit Pan and local fishermen for help with sampling fish and collecting data from study sites.

Funding

The authors wish to thank the Indian Institute of Science Education and Research Kolkata (IISER-Kolkata, India) and Ministry of Environment, Forests and Climate Change (MoEFCC), Government of India, for financial support during this study to AB. RM was supported through research fellowships provided by Council of Scientific and Industrial Research, India (CSIR India).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized and designed by AB and RM. Field work, sample collection, preparation and analysis were performed by RM. Manuscript was written by RM and AB.

Corresponding author

Correspondence to Anuradha Bhat.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Ethics approval

The study complies with the existing rules and guidelines outlined by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India. The study also adheres to the Institutional Animal Ethics Committee's (IAEC) rules and guidelines of IISER Kolkata. Tissue samples from fish species, molluscs, invertebrates and plankton were collected following guidelines in the CPCSEA, Government of India.

Consent for publication (include appropriate statements)

All authors consent to publication.

Availability of data and material (data transparency)

Data will be made available upon request.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Bhat, A. Investigating the trophic ecology of freshwater fish communities from central and eastern Indian streams using stable isotope analysis. COMMUNITY ECOLOGY 22, 203–215 (2021). https://doi.org/10.1007/s42974-021-00049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-021-00049-4

Keywords

Navigation