Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T08:18:18.935Z Has data issue: false hasContentIssue false

Polytypism of Cronstedtite From Nagybörzsöny, Hungary

Published online by Cambridge University Press:  01 January 2024

Jiří Hybler*
Affiliation:
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21, Praha 8, Czech Republic
Zdeněk Dolníček
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193 00, Praha 9, Czech Republic
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193 00, Praha 9, Czech Republic
Martin Števko
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, SK-840 05, Bratislava, Slovak Republic
*
*E-mail address of corresponding author: hybler@fzu.cz

Abstract

The present study provides an example of the accurate identification of polytypes of trioctahedral 1:1 layered silicates from single-crystal X-ray diffraction data collected with the aid of a four-circle diffractometer equipped with an area detector. Single crystals of the mineral cronstedtite from the Nagybörzsöny gold ore deposit, northern Hungary, were studied. The chemical composition of some crystals was determined by electron probe microanalysis (EPMA). The precession-like images of the reciprocal space (RS) sections created by the diffractometer software and presented in the study were used to determine the OD (ordered-disordered) subfamilies (Bailey’s groups A, B, C, D) and particular polytypes. With one exception, all crystals studied belong to subfamily A. The rare polytype 1M, a = 5.51, b = 9.54, c = 7.33 Å, β = 104.5°, space group Cm is relatively abundant in this occurrence. Another polytype 3T, a = 5.51, c = 21.32 Å, space group P31 was also found. Both polytypes occur separately or in mixed, mostly 1M dominant crystals. Some 1M polytype crystals are twinned by order 3 reticular merohedry with a 120° rotation along the chex axis as the twin operation. A rare 1M+3T mixed crystal with 1M part twinned also contains a small amount of subfamily C. A possible presence of the most common 1T polytype of this subfamily cannot be confirmed because of overlap of the characteristic reflections with those of 3T. Several completely disordered crystals produced diffuse streaks instead of discrete characteristic reflections on the RS sections. The EPMA revealed Fe, Si, traces of Mg, Al, S, and Cl. One black crystal originally considered to be cronstedtite was identified as (111) twinned sphalerite. Some crystals of cronstedtite are covered partially by a honey-brown crust or small crystals of siderite.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S. W. (1969). Polytypism of trioctahedral 1: 1 layer silicates. Clays and Clay Minerals, 17, 355371. https://doi.org/10.1346/CCMN.1969.0170605.CrossRefGoogle Scholar
Bailey, S.W. (1988). Polytypism of 1: 1 layer silicates. Pp. 127 in: Hydrous Phyllosilicates (Exclusive of micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Becker, W., & Lutz, H. D. (1978). Phase studies in the systems CoS-MnS, CoS-ZnS, and CoS-CdS. Materials Research Bulletin, 13, 907911. https://doi.org/10.1016/0025-5408(78)90102-2.CrossRefGoogle Scholar
Bindi, L., & Paar, W. H. (2017). Jaszczakite, [(Bi, Pb)3S3][AuS2], a new mineral species from Nagybörzsöny. Hungary. European Journal of Mineralogy, 29(4), 673677. https://doi.org/10.1127/ejm/2017/0029-2620.CrossRefGoogle Scholar
Dobosi, G., & Nagy, B. (1989). The occurrence of an Au-Bi sulphide in the Nagybörzsöny hydrothermal ore deposit, northern Hungary. Neues Jahrbuch für Mineralogie Monatshefte, 814.Google Scholar
Dornberger-Schiff, K., & Ďurovič, S. (1975a). OD-interpretation of kaolinite-type structures -I: Symmetry of kaolinite packets and their stacking possibilities. Clays and Clay Minerals, 23, 219229. https://doi.org/10.1346/CCMN.1975.0230310.CrossRefGoogle Scholar
Dornberger-Schiff, K., & Ďurovič, S. (1975b). OD-interpretation of kaolinite-type structures - II: The regular polytypes (MDO-polytypes) and their derivation. Clays and Clay Minerals, 23, 231246. https://doi.org/10.1346/CCMN.1975.0230311.CrossRefGoogle Scholar
Ďurovič, S. (1997). Cronstedtite-1M and coexistence of 1M and 3T polytypes. Ceramics-Silikáty, 41, 98104.Google Scholar
Effenberger, H., Mereiter, K., & Zemann, J. (1981). Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with the discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie, 156, 233243. https://doi.org/10.1524/zkri.1981.156.3-4.233.CrossRefGoogle Scholar
Geiger, C. A., Henry, D. L., Bailey, S. W., & Maj, J. J. (1983). Crystal structure of cronstedtite-2H2. Clays and Clay Minerals, 31, 97108. https://doi.org/10.1346/CCMN.1983.0310203.CrossRefGoogle Scholar
Hybler, J. (1998). Polytypism of cronstedtite from Chvaletice and Litošice. Ceramics-Silikáty, 42, 130131.Google Scholar
Hybler, J. (2014). Refinement of cronstedtite-1M. Acta Crystallographica, B70, 963972. https://doi.org/10.1107/S2052520614020897.Google Scholar
Hybler, J. (2016). Crystal structure of cronstedtite-6T2, a non-MDO polytype. European Journal of Mineralogy, 28, 777788. https://doi.org/10.1127/ejm/2016/0028-2541.CrossRefGoogle Scholar
Hybler, J., Klementová, M., Jarošová, M., Pignatelli, I., Mosser-Ruck, R., & Ďurovič, S. (2018). Polytypes identification in trioctahedral layer silicates by electron diffraction and application to cronstedtite mineral synthetized by iron-clay interaction. Clays and Clay Minerals, 66, 379402. https://doi.org/10.1346/CCMN.2018.064106.CrossRefGoogle Scholar
Hybler, J., Petříček, V., Ďurovič, S., & Smrčok, L. (2000). Refinement of the crystal structure of cronstedtite- 1T. Clays and Clay Minerals, 48, 331338. https://doi.org/10.1346/CCMN.2000.0480304.CrossRefGoogle Scholar
Hybler, J., Petříčcek, V., Fábry, J., & Ďurovič, S. (2002). Refinement of the crystal structure of cronstedtite-2H 2. Clays and Clay Minerals, 50, 601613. https://doi.org/10.1346/000986002320679332.CrossRefGoogle Scholar
Hybler, J., & Sejkora, J. (2017). Polytypism of cronstedtite from Chyňava, Czech Republic. Journal of Geosciences, 62, 137146. https://doi.org/10.3190/jgeosci.239.CrossRefGoogle Scholar
Hybler, J., Sejkora, J., & Venclík, V. (2016). Polytypism of cronstedtite from Pohled, Czech Republic. European Journal of Mineralogy, 28, 765775. https://doi.org/10.1127/ejm/2016/0028-2532.CrossRefGoogle Scholar
Hybler, J., Števko, M., & Sejkora, J. (2017). Polytypism of cronstedtite from Nižná Slaná, Slovakia. European Journal of Mineralogy, 29, 9199. https://doi.org/10.1127/ejm/2017/0029-2582.CrossRefGoogle Scholar
Kenngott, A. (1853). Das Mohs 'sche Mineralsystem. Wien: Gerold & Sohn 164 pp.Google Scholar
Koch, S. (1958). The associated occurrence of three ZnS modifications in Gyöngyösoroszi. Acta Universitatis Szegediensis, Acta Mineralogica-Petrographica, 11, 1122.Google Scholar
Koch, S., & Grasselly, G. (1953). The minerals of the sulphide oredeposite of Nagybörzsöny. Acta Universitatis Szegediensis, Acta Mineralogica-Petrographica, 6, 121.Google Scholar
Kogure, T., Hybler, J., & Ďurovič, S. (2001). A HRTEM study of cronstedtite: determination of polytypes and layer polarity in trioctahedral 1: 1 phyllosilicates. Clays and Clay Minerals, 49, 310317. https://doi.org/10.1346/CCMN.2001.0490405.CrossRefGoogle Scholar
Kogure, T., Hybler, J., & Yoshida, H. (2002). Coexistence of two polytypic groups in cronstedtite from Lostwithiel, England. Clays and Clay Minerals, 50, 504513. https://doi.org/10.1346/000986002320514226.CrossRefGoogle Scholar
Korpás, L., & Lang, B. (1993). Timing of volcanism and metallogenesis in the Börzsöny Mountains, Northern Hungary. Ore Geology Reviews, 8, 477501.CrossRefGoogle Scholar
Müller, W. F., Kurat, G., & Kracher, A. (1979). Chemical and crystallographical study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 293304.CrossRefGoogle Scholar
Nagy, B. (2002). Data for the mineralogical and geochemical knowledge of the precious metal minerals of the ore deposits and ore indications in the Börzsöny Mts. Földtani Közlöny 132(3–4), 401421 (In Hungarian with an English abstract).Google Scholar
Niita, E., Kimata, M., Hoshino, M., Echigo, T., Hamasaki, S., Nishida, N., Shimizu, M., & Akasaka, T. (2008). Crystal chemistry of ZnS minerals formed as high-temperature volcanic sublimates: matraite identical with sphalerite. Journal of Mineralogical and Petrological Sciences, 103, 145151. https://doi.org/10.2465/jmps.071022fCrossRefGoogle Scholar
Paar, W. H., Putz, H., Topa, D., Roberts, A. C., Stanley, C. J., & Culetto, F. J. (2006). Jonassonite, Ag(Bi,Pb)5S4, a new mineral species from Nagybörzsöny, Hungary. The Canadian Mineralogist, 44, 11271136.CrossRefGoogle Scholar
Pantó, G., & Mikó, I. (1964). Nagybörzsöny ore deposit. Annals of Hungarian Geological Institute, 50, 1153 (in Hungarian).Google Scholar
Pignatelli, I., Marrocchi, Y., Mugnaioli, E., Bourdelle, F., & Gounelle, M. (2017). Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites. Geochimica et Cosmochimica Acta, 209, 106122.CrossRefGoogle Scholar
Pignatelli, I., Marrochi, Y., Vacher, L. G., Delon, R., & Gounelle, M. (2016). Multiple precursors of secondary mineralogical assemblages in CM chondrites. Meteoritic and Planetary Science, 51–4, 785805. https://doi.org/10.1111/maps.12625.CrossRefGoogle Scholar
Pignatelli, I., Mosser-Ruck, R., Mugnaioli, E., Sterpenich, J., & Gemmi, M. (2020). The effect of the starting mineralogical mixture on the nature of Fe serpentines obtained during hydrothermal syntheses at 90°C. Clays and Clay Minerals, 68, 394412. https://doi.org/10.1007/s42860-020-00080-y.CrossRefGoogle Scholar
Pignatelli, I., Mugnaioli, E., Hybler, J., Mosser-Ruck, R., Cathelineau, M., & Michau, N. (2013). A multi-technique characterisation of cronstedtite synthetized by iron-clay interaction in a step by step cooling procedure. Clays and Clay Minerals, 61, 277289. https://doi.org/10.1346/CCMN.2013.0610408.CrossRefGoogle Scholar
Pignatelli, I., Mugnaioli, E., & Marrocchi, Y. (2018). Cronstedtite polytypes in the Paris meteorite. European Journal of Mineralogy. https://doi.org/10.1127/ejm/2018/0030-2713.CrossRefGoogle Scholar
Pouchou, J.L., & Pichoir, F. (1985). “PAP” ((ppZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rigaku Oxford Diffraction (2018). CrysAlisPro, version 171.40.35a, Data collection and data reduction GUI.Google Scholar
Sasvári, K. (1958). ZnS mineral with ZnS-3R crystal structure. Acta Universitatis Szegediensis, Acta Mineralogica-Petrographica, 11, 2327.Google Scholar
Smrčok, L., Ďurovič, S., Petříček, V., & Weiss, Z. (1994). Refinement of the crystal structure of cronstedtite-3T. Clays and Clay Minerals, 42, 544551. https://doi.org/10.1346/CCMN.1994.0420505.CrossRefGoogle Scholar
Steadman, R. (1964). The structure of trioctahedral kaolin-type silicates. Acta Crystallographica, 17, 924927.CrossRefGoogle Scholar
Steadman, R., & Nuttall, P. M. (1963). Polymorphism in cronstedtite. Acta Crystallographica, 16, 18.CrossRefGoogle Scholar
Steadman, R., & Nuttall, P. M. (1964). Further polymorphism in cronstedtite. Acta Crystallographica, 17, 404406.CrossRefGoogle Scholar
Steinmann, JJ. (1820). Chemische Untersuchung des Cronstedtit's, eines neuen Fossils von Příbram in Böhmen. Gottlieb Haase, Prague, 47 pp. (in German).Google Scholar
Steinmann, J. J. (1821). Chemische Untersuchung des Cronstedtit's, eines neuen Fossils von Příbram in Böhmen. Journal für Chemie und Physik, 32, 69100 (in German).Google Scholar
Szakáll, S., Fehér, B., & Tóth, L. (2016). Hungarian Minerals. GeoLitera, SZTE TTIK, Földrajzi és Földtudományi Intézet, 1526 (In Hungarian).Google Scholar
Szakáll, S., Zajzon, N., & Kristály, F. (2012). Unusual ikunolite from Nagybörzsöny ore deposit, Börzsöny Mts., Hungary. Acta Mineralogica-Petrographica, Abstract Series, 7, 134.Google Scholar
Wahle, M. W., Bujnowski, T. J., Guggenheim, S., & Kogure, T. (2010). Guidottiite, the Mn-analogue of cronstedtite: A new serpentine-group mineral from South Africa. Clays and Clay Minerals, 58, 364376. https://doi.org/10.1346/CCMN.2010.0580307.CrossRefGoogle Scholar
Zajzon, N., Szakáll, S., Kristály, F., Hartai, É., & Fehér, B. (2014). Pb-Bi-(Ag)-sulphosalts from Nagybörzsöny, Hungary. 21st Meeting of the International Mineralogical Association, 136.Google Scholar