Skip to main content
Log in

A brief review of s-triazine graphitic carbon nitride

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (C3N4) has been intensively studied in the last 25 years. Although the number of papers about C3N4 published per year has been growing exponentially, there are still some unclear issues with this material. One of them is s-triazine C3N4 (s-C3N4), which is an allotrope of C3N4. The theoretical computational as well as experimental synthetic results are not unambiguous. The properties of s-C3N4 have been described only in two papers, and no similar and reproducible results have been obtained so far. This paper provides a brief overview of s-C3N4 to bring attention to this material, for example, as a potential photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu AY, Cohen ML (1989) Prediction of new low compressibility solids. Science 245(4920):841–842. https://doi.org/10.1126/science.245.4920.841

    Article  CAS  Google Scholar 

  2. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  3. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed Engl 51(1):68–89. https://doi.org/10.1002/anie.201101182

    Article  CAS  Google Scholar 

  4. Dong G, Zhang Y, Pan Q, Qiu J (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C 20:33–50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002

    Article  CAS  Google Scholar 

  5. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  6. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  7. Yang Y, Li X, Zhou C, Xiong W, Zeng G, Huang D, Zhang C, Wang W, Song B, Tang X, Li X, Guo H (2020) Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: a critical review. Water Res 184:116200. https://doi.org/10.1016/j.watres.2020.116200

    Article  CAS  Google Scholar 

  8. Barrio J, Volokh M, Shalom M (2020) Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J Mater Chem A 8(22):11075–11116. https://doi.org/10.1039/D0TA01973A

    Article  CAS  Google Scholar 

  9. Safaei J, Mohamed NA, Mohamad Noh MF, Soh MF, Ludin NA, Ibrahim MA, Roslam Wan Isahak WN, Mat Teridi MA (2018) Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. J Mater Chem A 6(45):22346–22380. https://doi.org/10.1039/C8TA08001A

    Article  CAS  Google Scholar 

  10. Zhou Z, Zhang Y, Shen Y, Liu S, Zhang Y (2018) Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev 47(7):2298–2321. https://doi.org/10.1039/C7CS00840F

    Article  CAS  Google Scholar 

  11. Wang A, Wang C, Fu L, Wong-Ng W, Lan Y (2017) Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett 9(4):47. https://doi.org/10.1007/s40820-017-0148-2

    Article  CAS  Google Scholar 

  12. Kroke E, Schwarz M (2004) Novel group 14 nitrides. Coord Chem Rev 248(5–6):493–532. https://doi.org/10.1016/j.ccr.2004.02.001

    Article  CAS  Google Scholar 

  13. Kessler FK, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X, Bojdys MJ (2017) Functional carbon nitride materials: design strategies for electrochemical devices. Nat Rev Mater 2(6):17030. https://doi.org/10.1038/natrevmats.2017.30

    Article  CAS  Google Scholar 

  14. Miller TS, Jorge AB, Suter TM, Sella A, Corà F, McMillan PF (2017) Carbon nitrides: synthesis and characterization of a new class of functional materials. Phys Chem Chem Phys 19(24):15613–15638. https://doi.org/10.1039/C7CP02711G

    Article  CAS  Google Scholar 

  15. Miller TS, d’Aleo A, Suter T, Aliev AE, Sella A, McMillan PF (2017) Pharaoh’s serpents: new insights into a classic carbon nitride material. J Inorg Gen Chem 643(21):1572–1580. https://doi.org/10.1002/zaac.201700268

    Article  CAS  Google Scholar 

  16. Zhang H, Zuo X, Tang H, Li G, Zhou Z (2015) Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations. Phys Chem Chem Phys 17(9):6280–6288. https://doi.org/10.1039/C4CP05288A

    Article  CAS  Google Scholar 

  17. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27(13):2150–2176. https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  18. Lau VW-H, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV (2016) Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat Commun 7(1):12165. https://doi.org/10.1038/ncomms12165

    Article  CAS  Google Scholar 

  19. Xing J, Fang WQ, Zhao HJ, Yang HG (2012) Inorganic photocatalysts for overall water splitting. Chem Asian J 7(4):642–657. https://doi.org/10.1002/asia.201100772

    Article  CAS  Google Scholar 

  20. Acharya R, Parida K (2020) A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. J Environ Chem Eng 8(4):103896. https://doi.org/10.1016/j.jece.2020.103896

    Article  CAS  Google Scholar 

  21. Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J Chem 26(5):508–512. https://doi.org/10.1039/B111062B

    Article  CAS  Google Scholar 

  22. Gracia J, Kroll P (2009) Corrugated layered heptazine-based carbon nitride: the lowest energy modifications of C3N4 ground state. J Mater Chem 19(19):3013–3019. https://doi.org/10.1039/B821568E

    Article  CAS  Google Scholar 

  23. Sehnert J, Baerwinkel K, Senker J (2007) Ab initio calculation of solid-state NMR spectra for different triazine and heptazine based structure proposals of g-C3N4. J Phys Chem B 111(36):10671–10680. https://doi.org/10.1021/jp072001k

    Article  CAS  Google Scholar 

  24. Ortega J, Sankey OF (1995) Relative stability of hexagonal and planar structures of hypothetical C3N4 solids. Phys Rev B 51(4):2624–2627. https://doi.org/10.1103/PhysRevB.51.2624

    Article  CAS  Google Scholar 

  25. Teter DM, Hemley RJ (1996) Low-compressibility carbon nitrides. Science 271(5245):53–55. https://doi.org/10.1126/science.271.5245.53%JScience

    Article  CAS  Google Scholar 

  26. Lowther JE (1999) Relative stability of some possible phases of graphitic carbon nitride. Phys Rev B 59(18):11683–11686. https://doi.org/10.1103/PhysRevB.59.11683

    Article  CAS  Google Scholar 

  27. Alves I, Demazeau G, Tanguy B, Weill F (1999) On a new model of the graphitic form of C3N4. Solid State Commun 109(11):697–701. https://doi.org/10.1016/S0038-1098(98)00631-0

    Article  CAS  Google Scholar 

  28. Liu AY, Wentzcovitch RM (1994) Stability of carbon nitride solids. Phys Rev B 50(14):10362–10365. https://doi.org/10.1103/PhysRevB.50.10362

    Article  CAS  Google Scholar 

  29. Dong H, Oganov AR, Zhu Q, Qian G-R (2015) The phase diagram and hardness of carbon nitrides. Sci Rep 5(1):9870. https://doi.org/10.1038/srep09870

    Article  CAS  Google Scholar 

  30. Pickard CJ, Salamat A, Bojdys MJ, Needs RJ, McMillan PF (2016) Carbon nitride frameworks and dense crystalline polymorphs. Phys Rev B 94(9):094104. https://doi.org/10.1103/PhysRevB.94.094104

    Article  CAS  Google Scholar 

  31. Zhu B, Wageh S, Al-Ghamdi AA, Yang S, Tian Z, Yu J (2019) Adsorption of CO2, O2, NO and CO on s-triazine-based g-C3N4 surface. Catal Today 335:117–127. https://doi.org/10.1016/j.cattod.2018.09.038

    Article  CAS  Google Scholar 

  32. Zhu B, Zhang L, Cheng B, Yu Y, Yu J (2021) H2O molecule adsorption on s-triazine-based g-C3N4. Chin J Catal 42(1):115–122. https://doi.org/10.1016/S1872-2067(20)63598-7

    Article  CAS  Google Scholar 

  33. Ivanov AS, Miller E, Boldyrev AI, Kameoka Y, Sato T, Tanaka K (2015) Pseudo Jahn-Teller origin of buckling distortions in two-dimensional triazine-based graphitic carbon nitride (g-C3N4) sheets. J Phys Chem C 119(21):12008–12015. https://doi.org/10.1021/acs.jpcc.5b02299

    Article  CAS  Google Scholar 

  34. Datta S, Singh P, Jana D, Chaudhuri CB, Harbola MK, Johnson DD, Mookerjee A (2020) Exploring the role of electronic structure on photo-catalytic behavior of carbon-nitride polymorphs. Carbon 168:125–134. https://doi.org/10.1016/j.carbon.2020.04.008

    Article  CAS  Google Scholar 

  35. Zhu B, Cheng B, Zhang L, Yu J (2019) Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 1(1):32–56. https://doi.org/10.1002/cey2.1

    Article  CAS  Google Scholar 

  36. Mortazavi B, Shojaei F, Shahrokhi M, Azizi M, Rabczuk T, Shapeev AV, Zhuang X (2020) Nanoporous C3N4, C3N5 and C3N6 nanosheets; novel strong semiconductors with low thermal conductivities and appealing optical/electronic properties. Carbon 167:40–50. https://doi.org/10.1016/j.carbon.2020.05.105

    Article  CAS  Google Scholar 

  37. Brito WH, da Silva-Araújo J, Chacham H (2015) g-C3N4 and others: predicting new nanoporous carbon nitride planar structures with distinct electronic properties. J Phys Chem C 119(34):19743–19751. https://doi.org/10.1021/acs.jpcc.5b02543

    Article  CAS  Google Scholar 

  38. Reshak AH, Khan SA, Auluck S (2014) Linear and nonlinear optical properties for AA and AB stacking of carbon nitride polymorph (C3N4). RSC Adv 4(23):11967–11974. https://doi.org/10.1039/C4RA00388H

    Article  CAS  Google Scholar 

  39. Zuo H-W, Lu C-H, Ren Y-R, Li Y, Zhang Y-F, Chen W-K (2016) Pt4 clusters supported on monolayer graphitic carbon nitride sheets for oxygen adsorption: a first-principles study. Acta Phys Chim Sin 32(5):1183–1190. https://doi.org/10.3866/pku.Whxb201603032

    Article  CAS  Google Scholar 

  40. Liu J (2016) Effect of phosphorus doping on electronic structure and photocatalytic performance of g-C3N4: Insights from hybrid density functional calculation. J Alloy Compd 672:271–276. https://doi.org/10.1016/j.jallcom.2016.02.094

    Article  CAS  Google Scholar 

  41. Opoku F, Govender KK, Sittert CGCEV, Govender PP (2018) Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: a hybrid density functional theory study. Appl Surf Sci 427:487–498. https://doi.org/10.1016/j.apsusc.2017.09.019

    Article  CAS  Google Scholar 

  42. Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3(39):19936–19947. https://doi.org/10.1039/C5TA05503B

    Article  CAS  Google Scholar 

  43. Wang F, Ye Y, Cao Y, Zhou Y (2019) The favorable surface properties of heptazine based g-C3N4 (001) in promoting the catalytic performance towards CO2 conversion. Appl Surf Sci 481:604–610. https://doi.org/10.1016/j.apsusc.2019.03.079

    Article  CAS  Google Scholar 

  44. Silva AM, Rojas MI (2016) Electric and structural properties of polymeric graphite carbon nitride (g-C3N4): a density functional theory study. Comput Theor Chem 1098:41–49. https://doi.org/10.1016/j.comptc.2016.11.004

    Article  CAS  Google Scholar 

  45. Zhu B, Zhang L, Xu D, Cheng B, Yu J (2017) Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation. J CO2 Util 21:327–335. https://doi.org/10.1016/j.jcou.2017.07.021

    Article  CAS  Google Scholar 

  46. Wu H-Z, Liu L-M, Zhao S-J (2014) The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys Chem Chem Phys 16(7):3299–3304. https://doi.org/10.1039/C3CP54333A

    Article  CAS  Google Scholar 

  47. Xu Y, Gao S-P (2012) Band gap of C3N4 in the GW approximation. Int J Hydrog Energy 37(15):11072–11080. https://doi.org/10.1016/j.ijhydene.2012.04.138

    Article  CAS  Google Scholar 

  48. Kouvetakis J, Todd M, Wilkens B, Bandari A, Cave N (1994) Novel synthetic routes to carbon-nitrogen thin films. Chem Mater 6(6):811–814. https://doi.org/10.1021/cm00042a018

    Article  CAS  Google Scholar 

  49. Todd M, Kouvetakis J, Groy TL, Chandrasekhar D, Smith DJ, Deal PW (1995) Novel synthetic routes to carbon nitride. Chem Mater 7(7):1422–1426. https://doi.org/10.1021/cm00055a023

    Article  CAS  Google Scholar 

  50. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G (2009) Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A 94(2):387–392. https://doi.org/10.1007/s00339-008-4816-4

    Article  CAS  Google Scholar 

  51. Algara-Siller G, Severin N, Chong SY, Björkman T, Palgrave RG, Laybourn A, Antonietti M, Khimyak YZ, Krasheninnikov AV, Rabe JP, Kaiser U, Cooper AI, Thomas A, Bojdys MJ (2014) Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew Chem 53(29):7450–7455. https://doi.org/10.1002/anie.201402191

    Article  CAS  Google Scholar 

  52. Noda Y, Merschjann C, Tarábek J, Amsalem P, Koch N, Bojdys MJ (2019) Directional charge transport in layered two-dimensional triazine-based graphitic carbon nitride. Angew Chem Int Ed 58(28):9394–9398. https://doi.org/10.1002/anie.201902314

    Article  CAS  Google Scholar 

  53. Suter T, Brázdová V, McColl K, Miller TS, Nagashima H, Salvadori E, Sella A, Howard CA, Kay CWM, Corà F, McMillan PF (2018) Synthesis, structure and electronic properties of graphitic carbon nitride films. J Phys Chem C 122(44):25183–25194. https://doi.org/10.1021/acs.jpcc.8b07972

    Article  CAS  Google Scholar 

  54. Ladva SA, Travis W, Quesada-Cabrera R, Rosillo-Lopez M, Afandi A, Li Y, Jackman RB, Bear JC, Parkin IP, Blackman C, Salzmann CG, Palgrave RG (2017) Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices. Nanoscale 9(43):16586–16590. https://doi.org/10.1039/C7NR06489F

    Article  CAS  Google Scholar 

  55. Dong Q, Mohamad Latiff N, Mazánek V, Rosli NF, Chia HL, Sofer Z, Pumera M (2018) Triazine- and heptazine-based carbon nitrides: toxicity. ACS Appl Nano Mater 1(9):4442–4449. https://doi.org/10.1021/acsanm.8b00708

    Article  CAS  Google Scholar 

  56. Wirnhier E, Döblinger M, Gunzelmann D, Senker J, Lotsch BV, Schnick W (2011) Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3⋅LiCl]: a crystalline 2D carbon nitride network. Chemistry 17(11):3213–3221. https://doi.org/10.1002/chem.201002462

    Article  CAS  Google Scholar 

  57. Köwitsch I, Mehring M (2021) Carbon nitride materials: impact of synthetic method on photocatalysis and immobilization for photocatalytic pollutant degradation. J Mater Sci 56(33):18608–18624. https://doi.org/10.1007/s10853-021-06405-z

    Article  CAS  Google Scholar 

  58. Bojdys MJ, Müller J-O, Antonietti M, Thomas A (2008) Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry 14(27):8177–8182. https://doi.org/10.1002/chem.200800190

    Article  CAS  Google Scholar 

  59. Liu X, Fechler N, Antonietti M (2013) Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem Soc Rev 42(21):8237–8265. https://doi.org/10.1039/C3CS60159E

    Article  CAS  Google Scholar 

  60. Zhu W, Song H, Lv Y (2018) Triazine-based graphitic carbon nitride: controllable synthesis and enhanced cataluminescent sensing for formic acid. Anal Bioanal Chem 410(28):7499–7509. https://doi.org/10.1007/s00216-018-1368-0

    Article  CAS  Google Scholar 

  61. Khabashesku VN, Zimmerman JL, Margrave JL (2000) Powder synthesis and characterization of amorphous carbon nitride. Chem Mater 12(11):3264–3270. https://doi.org/10.1021/cm000328r

    Article  CAS  Google Scholar 

  62. Zinin PV, Ming L-C, Sharma SK, Khabashesku VN, Liu X, Hong S, Endo S, Acosta T (2009) Ultraviolet and near-infrared Raman spectroscopy of graphitic C3N4 phase. Chem Phys Lett 472(1):69–73. https://doi.org/10.1016/j.cplett.2009.02.068

    Article  CAS  Google Scholar 

  63. Kawaguchi M, Tokimatsu Y, Nozaki K, Kaburagi Y, Hishiyama Y (1997) Preparation and properties of a new hard material of composition C3N3.6-4.5O1.1-1.2H4.1-4.2. Chem Lett 26(10):1003–1004. https://doi.org/10.1246/cl.1997.1003

    Article  Google Scholar 

  64. Liu H, Chen D, Wang Z, Jing H, Zhang R (2017) Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance. Appl Catal B 203:300–313. https://doi.org/10.1016/j.apcatb.2016.10.014

    Article  CAS  Google Scholar 

  65. Zeng Z, Yu H, Quan X, Chen S, Zhang S (2018) Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl Catal B 227:153–160. https://doi.org/10.1016/j.apcatb.2018.01.023

    Article  CAS  Google Scholar 

  66. Yang J, Liang Y, Li K, Yang G, Wang K, Xu R, Xie X (2020) One-step synthesis of novel K+ and cyano groups decorated triazine-/heptazine-based g-C3N4 tubular homojunctions for boosting photocatalytic H2 evolution. Appl Catal B 262:118252. https://doi.org/10.1016/j.apcatb.2019.118252

    Article  CAS  Google Scholar 

  67. Li Y, Gong F, Zhou Q, Feng X, Fan J, Xiang Q (2020) Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl Catal B 268:118381. https://doi.org/10.1016/j.apcatb.2019.118381

    Article  CAS  Google Scholar 

  68. Zhang G, Lin L, Li G, Zhang Y, Savateev A, Zafeiratos S, Wang X, Antonietti M (2018) Ionothermal synthesis of triazine–heptazine-based copolymers with apparent quantum Yields of 60 % at 420 nm for solar hydrogen production from “sea water.” Angew Chem Int Ed 57(30):9372–9376. https://doi.org/10.1002/anie.201804702

    Article  CAS  Google Scholar 

  69. Jing H, You M, Yi S, Li T, Ji H, Wang Y, Zhang Z, Zhang R, Chen D, Yang H (2020) Precursor-engineering coupled microwave molten-salt strategy enhances photocatalytic hydrogen evolution performance of g-C3N4 nanostructures. Chemsuschem 13(4):827–837. https://doi.org/10.1002/cssc.201902730

    Article  CAS  Google Scholar 

  70. Jiang L, Yuan X, Pan Y, Liang J, Zeng G, Wu Z, Wang H (2017) Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl Catal B 217:388–406. https://doi.org/10.1016/j.apcatb.2017.06.003

    Article  CAS  Google Scholar 

  71. Li H, Wang L, Liu Y, Lei J, Zhang J (2016) Mesoporous graphitic carbon nitride materials: synthesis and modifications. Res Chem Intermed 42(5):3979–3998. https://doi.org/10.1007/s11164-015-2294-9

    Article  CAS  Google Scholar 

  72. Wang L, Wang C, Hu X, Xue H, Pang H (2016) Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chemistry 11(23):3305–3328. https://doi.org/10.1002/asia.201601178

    Article  CAS  Google Scholar 

  73. Starukh H, Praus P (2020) Doping of graphitic carbon nitride with non-metal elements and its application for photocatalysis. Catalysts 10(10):38. https://doi.org/10.3390/catal10101119

    Article  CAS  Google Scholar 

  74. Hasija V, Raizada P, Sudhaik A, Sharma K, Kumar A, Singh P, Jonnalagadda SB, Thakur VK (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524. https://doi.org/10.1016/j.apmt.2019.04.003

    Article  Google Scholar 

  75. Liu X, Ma R, Zhuang L, Hu B, Chen J, Liu X, Wang X (2020) Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol 51(8):751–790. https://doi.org/10.1080/10643389.2020.1734433

    Article  CAS  Google Scholar 

  76. Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X (2019) Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem Rev 119(3):1806–1854. https://doi.org/10.1021/acs.chemrev.8b00501

    Article  CAS  Google Scholar 

  77. Zhang M, Bai X, Liu D, Wang J, Zhu Y (2015) Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl Catal B 164:77–81. https://doi.org/10.1016/j.apcatb.2014.09.020

    Article  CAS  Google Scholar 

  78. Xiong T, Cen W, Zhang Y, Dong F (2016) Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal 6(4):2462–2472. https://doi.org/10.1021/acscatal.5b02922

    Article  CAS  Google Scholar 

  79. Wang K-L, Li Y, Sun T, Mao F, Wu J-K, Xue B (2019) Fabrication of Na, Cl co-doped graphitic carbon nitride with enhanced photocatalytic activity for degradation of dyes and antibiotics. J Mater Sci 30(5):4446–4454. https://doi.org/10.1007/s10854-019-00733-2

    Article  CAS  Google Scholar 

  80. Liu C, Zhang Y, Dong F, Reshak AH, Ye L, Pinna N, Zeng C, Zhang T, Huang H (2017) Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. Appl Catal B 203:465–474. https://doi.org/10.1016/j.apcatb.2016.10.002

    Article  CAS  Google Scholar 

  81. Lan Z-A, Zhang G, Wang X (2016) A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl Catal B 192:116–125. https://doi.org/10.1016/j.apcatb.2016.03.062

    Article  CAS  Google Scholar 

  82. Ma L, Fan H, Wang J, Zhao Y, Tian H, Dong G (2016) Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl Catal B 190:93–102. https://doi.org/10.1016/j.apcatb.2016.03.002

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Czech Science Foundation, Project No. 19-15199S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Praus.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praus, P. A brief review of s-triazine graphitic carbon nitride. Carbon Lett. 32, 703–712 (2022). https://doi.org/10.1007/s42823-022-00319-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00319-9

Keywords

Navigation