Skip to main content

Advertisement

Log in

Carbon substrates: a review on fabrication, properties and applications

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon lives along with us in our daily life and has a vital role to play. It is present in the air and within all living organisms. Due to its handheld advantage in nano-properties that are utilized in many applications, carbon substrates came under limelight during the recent decades. Carbon substrates are most widely used in cancer detection, catalysis, bio-sensing, adsorption, drug delivery, carbon capture, hydrogen storage, and energy. Alongside, composite materials with carbon as an additive are also developing rapidly in applications like infrastructures, automobile, health care, consumer goods, etc. which became an integral chunk of our life. In this paper different types of carbon substrates and its applications, properties of the substrates were reviewed. The applications and methods of synthesis of carbon substrates are also dealt with a broad perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chu H, Zhang Z, Liu Y, Leng J (2014) Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon 66:154–163

    CAS  Google Scholar 

  2. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int 1:100003

    Google Scholar 

  3. Li J, Lu W, Suhr J, Chen H, Xiao JQ, Chou TW (2017) Superb electromagnetic wave-absorbing composites based on large-scale graphene and carbon nanotube films. Sci Rep 7(1):2349

    Google Scholar 

  4. Saravana Kumar A, Maivizhi Selvi P, Rajeshkumar L (2017) Delamination in drilling of sisal/banana reinforced composites produced by hand lay-up process. Appl Mech Mater 867:29–33

    Google Scholar 

  5. Yunlong Li, Wang Q, Wang S (2019) A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: molecular dynamics simulations. Compos B Eng 160:348–361

    Google Scholar 

  6. Yunlong Li, Wang S, Wang Q, Xing M (2018) A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos B Eng 133:35–41

    Google Scholar 

  7. Nasouri K, Shoushtari AM (2017) Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Compos Sci Technol 145:46–54

    CAS  Google Scholar 

  8. Zhu H, Wang X, Liang J, HonglingLv HT, Ma L, Yi Hu et al (2017) Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Func Mater 27(21):1606604

    Google Scholar 

  9. El Moumen A, Tarfaoui M, Lafdi K (2017) Mechanical characterization of carbon nanotubes based polymer composites using indentation tests. Compos B Eng 114:1–7

    Google Scholar 

  10. Sweeney CB, Blake AL, Martin JP, Thomas CA, Victoria KH, Aaron GM, Blake RT, Mohammad AS, Micah JG (2017) Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci Adv 3(6):1700262

    Google Scholar 

  11. Tarfaoui M, El Moumen A, Lafdi K (2017) Progressive damage modeling in carbon fibers/carbon nanotubes reinforced polymer composites. Compos B Eng 112:185–195

    CAS  Google Scholar 

  12. Zhang L-Q, Yang B, Teng J, Lei J, Yan D-X, Zhong G-J, Li Z-M (2017) Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. J Mater Chem C 5(12):3130–3138

    CAS  Google Scholar 

  13. Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mater Sci 78–79:1–92

    Google Scholar 

  14. Zhang L, De Greef N, Kalinka G, Van Bilzen B, Locquet J-P, IgnaasSeo VJW (2017) Carbon nanotube-grafted carbon fiber polymer composites: damage characterization on the micro-scale. Compos B Eng 126:202–210

    CAS  Google Scholar 

  15. Chaudhry MS, Czekanski A, Zhu ZH (2017) Characterization of carbon nanotube enhanced interlaminar fracture toughness of woven carbon fiber reinforced polymer composites. Int J Mech Sci 131:480–489

    Google Scholar 

  16. Chen J, Cui X, Zhu Y, Jiang W, Sui K (2017) Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon 114:441–448

    CAS  Google Scholar 

  17. Lebedev SM, Gefle OS, Amitov ET, Yu Berchuk D, Zhuravlev DV (2017) Poly (lactic acid)-based polymer composites with high electric and thermal conductivity and their characterization. Polym Testing 58:241–248

    CAS  Google Scholar 

  18. Cha J, Seongwoo JK, R, Soon HH, (2019) Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos Part B Eng 162:283–288

    CAS  Google Scholar 

  19. Che J, Kai Wu, Lin Y, Wang Ke, Qiang Fu (2017) Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy. Compos A Appl Sci Manuf 99:32–40

    CAS  Google Scholar 

  20. Mora A, Han F, Lubineau G (2018) Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites. Results Phys 10:81–90

    Google Scholar 

  21. Zhou B, Luo W, Yang J, XianbaoDuan YW, Zhou H, Chen R, Shan B (2017) Simulation of dispersion and alignment of carbon nanotubes in polymer flow using dissipative particle dynamics. Comput Mater Sci 126:35–42

    CAS  Google Scholar 

  22. El Moumen A, Tarfaoui M, Lafdi K, Benyahia H (2017) Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low-velocity impact. Compos Part B Eng 125:1–8

    CAS  Google Scholar 

  23. Sankaran S, Kalim Deshmukh M, Basheer Ahamed SK, Pasha K (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos A Appl Sci Manuf 114:49–71

    CAS  Google Scholar 

  24. Zhang H, Zhang G, Tang M, Zhou L, Li J, Fan X, Shi X, Qin J (2018) Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem Eng J 353:381–393

    CAS  Google Scholar 

  25. Li Y, Huang X, Zeng L, Li R, Tian H, Xuewei Fu, Wang Yu, Zhong W-H (2019) A review of the electrical and mechanical properties of carbon nano filler-reinforced polymer composites. J Mater Sci 54(2):1036–1076

    CAS  Google Scholar 

  26. Wang J, Fang Z, AijuanGu LX, Liu Fu (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J Appl Polym Sci 100(1):97–104

    CAS  Google Scholar 

  27. Srivastava VK, Gries T, Veit D, Quadflieg T, Mohr B, Kolloch M (2017) Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng Fract Mech 180:73–86

    Google Scholar 

  28. Avilés F, Oliva-Avilés AI, Cen-Puc M (2018) Piezoresistivity, strain, and damage self-sensing of polymer composites filled with carbon nanostructures. Adv Eng Mater 20(7):1701159

    Google Scholar 

  29. Wang L, Liu Y, Zhang Z, Wang B, JingjingQiu DH, Wang S (2017) Polymer composites-based thermoelectric materials and devices. Compos B Eng 122:145–155

    CAS  Google Scholar 

  30. Li SQ, Wang F, Wang Ye, Wang JW, Ma J, Xiao J (2008) Effect of acid and TETA modification on mechanical properties of MWCNTs/epoxy composites. J Mater Sci 43(8):2653–2658

    CAS  Google Scholar 

  31. Radzuan NA, Mohd MY, Zakaria AB, Sulong JS (2017) The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Compos B Eng 110:153–160

    Google Scholar 

  32. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    CAS  Google Scholar 

  33. Bhuvaneswari V, Rajeshkumar L, Balaji D, Saravanakumar R (2020) Study of mechanical and tribological properties of bio-ceramics reinforced aluminium alloy composites. Solid State Technol 63(5):4552–4560

    Google Scholar 

  34. Ma PC, Tang BZ, Kim J-K (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505

    CAS  Google Scholar 

  35. Ramesh M, Arivumani R (2020) Carbon nanotube-based metal-organic framework nanocomposites. In: Metal-Organic Framework Nanocomposites. CRC Press, pp 237–260

  36. Špitalský Z, Krontiras CA, Georga SN, Galiotis C (2009) Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos A Appl Sci Manuf 40(6–7):778–783

    Google Scholar 

  37. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung Y-C, Yoon HoGyu (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30

    Google Scholar 

  38. Jeong J-Y, Lee H-J, Kang S-W, Tan L-S, Baek J-B (2008) Nylon 610/functionalized multiwalled carbon nanotube composite prepared from in-situ interfacial polymerization. J Polym Sci Part A Polym Chem 46(18):6041–6050

    CAS  Google Scholar 

  39. Shi Y-D, Lei M, Chen Y-F, Zhang K, Zeng J-B, Wang M (2017) Ultralow percolation threshold in poly (l-lactide)/poly (ε-caprolactone)/multiwall carbon nanotubes composites with a segregated electrically conductive network. J Phys Chem C 121(5):3087–3098

    CAS  Google Scholar 

  40. Al-Saleh MH (2017) Clay/carbon nanotube hybrid mixture to reduce the electrical percolation threshold of polymer nanocomposites. Compos Sci Technol 149:34–40

    CAS  Google Scholar 

  41. Ramesh M, ArunRamnath R, Anish K, Aftab APK, Abdullah MA (2020) Electrically conductive self-healing materials: preparation, properties, and applications. In: Self-healing composite materials. Woodhead Publishing, pp 1–13. https://doi.org/10.1016/B978-0-12-817354-1.00001-6

  42. Tang Z, Tang CH, Gong H (2012) A High energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/Carbon nanotube electrodes. Adv Funct Mater 22(6):1272–1278

    CAS  Google Scholar 

  43. Guo Z et al (2007) Flexible high-loading particle-reinforced polyurethane magnetic anocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology 18(33):335704

    Google Scholar 

  44. Wang S et al (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Biores Technol 175:391–395

    CAS  Google Scholar 

  45. Ramesh M, Deepa C (2019) Processing of green composites. Green Composites. Springer, Singapore, pp 47–72

    Google Scholar 

  46. Yu L et al (2009) Catalytic synthesis of carbon nanofibers and nanotubes by the pyrolysis of acetylene with iron nanoparticles prepared using a hydrogen-arc plasma method. Mater Lett 63(20):1677–1679

    CAS  Google Scholar 

  47. Chiu W et al (2007) One pot synthesis of monodisperse Fe3O4 nanocrystals by pyrolysis reaction of organometallic compound. Mater Chem Phys 106(2):231–235

    CAS  Google Scholar 

  48. Ramesh M, Rajeshkumar L (2018) Wood flour filled thermoset composites. Materials Research Forum LLC. https://doi.org/10.21741/9781945291876-2

  49. Shen Y, Yoshikawa K (2014) Tar conversion and vapour upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind Eng Chem Res 53(27):10929–10942

    CAS  Google Scholar 

  50. Liu X-M, Yang G, Fu S-Y (2007) Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route. Mater Sci Eng, C 27(4):750–755

    CAS  Google Scholar 

  51. Gong J et al (2013) Catalytic conversion of linear low density polyethylene into carbon nanomaterials under the combined catalysis of Ni2O3 and poly (vinyl chloride). Chem Eng J 215:339–347

    Google Scholar 

  52. Chen D-H, Liao M-H (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzym 16(5):283–291

    CAS  Google Scholar 

  53. Chi Y et al (2012) Synthesis of Fe3O4@ SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 383(1):96–102

    CAS  Google Scholar 

  54. Siddiqui M et al (2019) Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: a response surface methodology approach. Waste Biomass Valoriz 10:521–532

    CAS  Google Scholar 

  55. Siddiqui M et al (2018) Thermogravimetric pyrolysis for neem char using novel agricultural waste: a study of process optimization and statistical modeling. Biomass Convers Biorefinery 8:857–871

    CAS  Google Scholar 

  56. Bradbury WLEAO (2011) Synthesis of carbide nanostructures on monolithic agricultural-waste biomass-activated carbon templates. Int J Appl Ceram Technol 8(4):947–952

    CAS  Google Scholar 

  57. Tan X et al (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    CAS  Google Scholar 

  58. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76

    CAS  Google Scholar 

  59. Ramesh M, Logesh R, Manikandan M, Sathesh Kumar N, Vishnu DP (2017) Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Mater Res 20(2):365–376

    CAS  Google Scholar 

  60. Li F-S, Wu Y-S, Chou J, Winter M, Wu N-L (2015) A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Adv Mater 27:130–137

    CAS  Google Scholar 

  61. Song G, Ryu J, Ko S, Bang BM, Choi S, Shin Y, Lee S-Y (2016) Revisiting surface modification of graphite: dual-layer coating for high-performance lithium battery anode materials. Chem-An Asian J 11(11):1711–1717

    CAS  Google Scholar 

  62. Son S-B, Cao L, Yoon T, Cresce A, Hafner SE, Liu J, Groner M, Xu K, Ban C (2019) Interfacially induced cascading failure in graphite-silicon composite anodes. Adv Sci 6(3):1801007

  63. De Arco LG, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou CW (2010) Continuous, highly flexible, and transparent graphene films by chemical vapour deposition for organic photovoltaics. ACS Nano 4(5):2865–2873

    Google Scholar 

  64. Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang CA, Badmaev A, Zhou CW (2010) Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapour deposition. J Phys Chem Lett 1(20):3101–3107

    CAS  Google Scholar 

  65. Karabacak T, Guclu H, Yuksel M (2009) Network behavior in thin film growth dynamics. Phys Rev B. https://doi.org/10.1103/PhysRevB.79.195418

  66. Ramesh M, Bhoopathi R, Deepa C, Sasikala G (2018) Experimental investigation on morphological, physical and shear properties of hybrid composite laminates reinforced with flax and carbon fibers. J Chin Adv Mater Soc 6(4):640–654

    CAS  Google Scholar 

  67. Teng C-C, Ma C-C, Chu-Hua Lu, Yang S-Y, Lee S-H, Hsiao M-C, Yen M-Y, Chiou K-C, Lee T-M (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15):5107–5116

    CAS  Google Scholar 

  68. Wan Y, Tang L, Gong L, Yan D, Li Y, Wu L, Jiang J, Lai G (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    CAS  Google Scholar 

  69. Qian R, Jinhong Yu, Chao Wu, Zhai X, Jiang P (2013) Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv 3(38):17373–17379

    CAS  Google Scholar 

  70. Sun R, Yao H, Zhang H-B, Li Y, Mai Y-W, Zhong-Zhen Yu (2016) Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites. Compos Sci Technol 137:16–23

    CAS  Google Scholar 

  71. Zong P, Jifang Fu, Chen L, Yin J, Dong X, Yuan S, Shi L, Deng W (2016) Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites. RSC Adv 6(13):10498–10506

    CAS  Google Scholar 

  72. Ma W-S, Li Wu, Yang F, Wang S-F (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49(2):562–571

    CAS  Google Scholar 

  73. Varenik M, Nadiv R, Levy I, Vasilyev G, Regev O (2017) Breaking through the solid/liquid processability barrier: thermal conductivity and rheology in hybrid graphene–graphite polymer composites. ACS Appl Mater Interfaces 9(8):7556–7564

    CAS  Google Scholar 

  74. Li An, Zhang C, Zhang Y-F (2017) RGO/TPU composite with a segregated structure as thermal interface material. Compos A Appl Sci Manuf 101:108–114

    CAS  Google Scholar 

  75. Tian L, Wang Y, Li Z, Mei H, Shang Y (2017) The thermal conductivity-dependant drag reduction mechanism of water droplets controlled by graphene/silicone rubber composites. Exp Thermal Fluid Sci 85:363–369

    CAS  Google Scholar 

  76. Balaji D, Ramesh M, Kannan T, Deepan S, Bhuvaneswari V, Rajeshkumar L (2020) Experimental investigation on mechanical properties of banana/snake grass fiber reinforced hybrid composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.09.548

    Article  Google Scholar 

  77. Alam FE, Dai W, Yang M, Shiyu Du, Li X, Jinhong Yu, Jiang N, Lin C-T (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A 5(13):6164–6169

    CAS  Google Scholar 

  78. Yan H, Tang Y, Long W, Li Y (2014) Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 49(15):5256–5264

    CAS  Google Scholar 

  79. Wu K, Lei C, Huang R, Yang W, Chai S, Geng C, Chen F, Qiang Fu (2017) Design and preparation of a unique segregated double network with excellent thermal conductive property. ACS Appl Mater Interfaces 9(8):7637–7647

    CAS  Google Scholar 

  80. Ryu J, Kim Y, Won D, Kim N, Park JS, Lee EK, Cho D, Cho SP, Kim SJ, Ryu GH, Shin HAS, Lee Z, Hong BH, Cho S (2014) Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapour deposition. ACS Nano 8(1):950–956

    CAS  Google Scholar 

  81. Ramesh M, Rajesh Kumar L, Anish K, Abdullah MA (2020) Self-healing polymer composites and its chemistry. In: Self-healing composite materials. Woodhead Publishing, pp 415–427

  82. Wang F, Yi J, Wang Y, Wang C, Wang J, Xia Y (2014) Graphite intercalation compounds (GICs): a new type of promising anode material for lithium-ion batteries. Adv Energy Mater 4(2):1300600

    Google Scholar 

  83. Vissers DR, Chen Z, Shao Y, Engelhard M, Das U, Redfern P, Curtiss LA, Pan B, Liu J, Amine K (2016) Role of Manganese deposition on graphite in the capacity fading of lithium ion batteries. ACS Appl Mater Interfaces 8(22):14244–14251

    CAS  Google Scholar 

  84. Chang C-C, Liu S-J, Wu J-J, Yang C-H (2007) Nano-tin Oxide/Tin particles on a graphite surface as an anode material for lithium-ion batteries. J Phys Chem C 111(44):16423–16427

    CAS  Google Scholar 

  85. Cao X, Li Y, Li X, Zheng J, Gao J, Gao Y, Wu X, Zhao Y, Yang Y (2013) Novel phosphamide additive to improve thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries. ACS Appl Mater Interfaces 5(22):11494–11497

    CAS  Google Scholar 

  86. Ramesh M, ArunRamnath R, Deepa C (2021) Friction and wear properties of carbon nanotube-reinforced polymer composites. In: Tribology of polymer composites: characterization, properties, and applications, pp 223–240

  87. Jiang S, Sun F, Fan H, Fang D (2017) Fabrication and testing of composite orthogrid sandwich cylinder. Compos Sci Technol 142:171–179

    CAS  Google Scholar 

  88. Wu SR, Chen TH, Tsai HY (2019) A review of actuation force in origami applications. J Mech 35(5):627–639

    Google Scholar 

  89. Gattas JM, You Z (2015) The behaviour of curved-crease origami foldcores under low-velocity impact loads. Int J Solids Struct 53:80–91

    Google Scholar 

  90. Schenk M, Guest SD, McShane GJ (2014) Novel stacked folded cores for blast-resistant sandwich beams. Int J Solids Struct 51:4196–4214

    Google Scholar 

  91. Kintscher M, Kärger L, Wetzel A, Hartung D (2007) Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression. Compos Part A 38:1288–1295

    Google Scholar 

  92. Ramesh M, Deepa C, Tamil Selvan M, Hemachandra Reddy K (2020) Effect of alkalization on characterization of ripe bulrush (Typha Domingensis) grass fiber reinforced epoxy composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1764443

  93. Demiral M, Kadioglu F (2018) Failure behaviour of the adhesive layer and angle ply composite adherends in single lap joints: a numerical study. Int J Adhes Adhes 87:181–190

    CAS  Google Scholar 

  94. Le Q-H, Kuan H-C, Dai J-B, Zaman I, Luong L, Ma J (2010) Structure–property relations of 55 nm particle-toughened epoxy. Polymer 51(21):4867–4879

    CAS  Google Scholar 

  95. Difallah BB, Kharrat M, Dammak M, Monteil G (2012) Microstructure, friction and wear analysis of thermoplastic based composites with solid lubricant. Mech Ind 13(5):337–346

    Google Scholar 

  96. Ma J, Mo MS, Du XS, Dai SR, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110(1):304–312

    CAS  Google Scholar 

  97. Kuan HC, Dai JB, Ma J (2010) A reactive polymer for toughening epoxy resin. J Appl Polym Sci 115(6):3265–3272

    CAS  Google Scholar 

  98. Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Biores Technol 42(3):219–231

    CAS  Google Scholar 

  99. Harris K et al (2013) Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy 3(2):294–312

    Google Scholar 

  100. Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermo-chemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12(2):504–517

    CAS  Google Scholar 

  101. Ramesh M, Deepa C, Tamil Selvan M, Rajeshkumar L, Balaji D, Bhuvaneswari V (2020) Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.480

    Article  Google Scholar 

  102. Wang L et al (2009) Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants. Energy Convers Manag 50(7):1704–1713

    CAS  Google Scholar 

  103. Saunders J, Rosentrater K (2009) Properties of solvent extracted low-oil corn distillers dried grains with solubles. Biomass Bioenerg 33(10):1486–1490

    CAS  Google Scholar 

  104. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Biores Technol 83(1):47–54

    CAS  Google Scholar 

  105. Thines K et al (2017) Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew Sustain Energy Rev 67:257–276

    CAS  Google Scholar 

  106. Fan L-W, Zhu Z-Q, Zeng Yi, Qian Lu, Zi-Tao Yu (2014) Heat transfer during melting of graphene-based composite phase change materials heated from below. Int J Heat Mass Transf 79:94–104

    CAS  Google Scholar 

  107. Shi L, Wang Y, Ding S, Zhenyu Chu Yu, Yin DJ, Luo J, Jin W (2017) A facile and green strategy for preparing newly-designed 3D graphene/gold film and its application in highly efficient electrochemical mercury assay. Biosens Bioelectron 89:871–879

    CAS  Google Scholar 

  108. Li B, Dong S, Xuan Wu, Wang C, Wang X, Fang J (2017) Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites. Compos Sci Technol 147:52–61

    CAS  Google Scholar 

  109. Dongn HS, Qi SJ (2015) Realising the potential of graphene-based materials for biosurfaces – A future perspective. Biosurface and Biotribology 1:229–248

    Google Scholar 

  110. Urbanová V, Bakandritsos A, Jakubec P, Szambó T, Zbořila R (2017) A facile graphene oxide based sensor for electrochemical detection of neonicotinoids. Biosens Bioelectron 89:532–537

    Google Scholar 

  111. Liu X-G, Xing X-J, Li Bo, Guo Y-M, Zhang Y-Z, Yang Y, Zhang L-F (2016) Fluorescent assay for alkaline phosphatase activity based on graphene oxide integrating with λ exonuclease. Biosens Bioelectron 81:460–464

    CAS  Google Scholar 

  112. Lee S-W, Choi BI, Kim JC, Woo S-B, Kim Y-G, Kwon S, Yoo J, Seo Y-S (2016) Sorption/desorption hysteresis of thin-film humidity sensors based on graphene oxide and its derivative. Sens Actuators B Chem 237:575–580

    CAS  Google Scholar 

  113. Sun A-L, Zhang Y-F, Sun G-P, Wang X-N, Tang D (2017) Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer–graphene oxide nanosheets and DNase I-based target recycling reaction. Biosens Bioelectron 89:659–665

    CAS  Google Scholar 

  114. Liu Q, Guo-Rong Xu (2016) Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination 394:162–175

    CAS  Google Scholar 

  115. Sarker PC, Masud Rana Md, Sarkar AK (2017) A simple FDTD approach for the analysis and design of graphene based optical devices. Optik 144:1–8

    CAS  Google Scholar 

  116. Zeyu Lu, Li X, Hanif A, Chen B, Parthasarathy P, Jinguang Yu, Li Z (2017) Early-age interaction mechanism between the graphene oxide and cement hydrates. Constr Build Mater 152:232–239

    Google Scholar 

  117. Cao R, Liu H, Chen S, Pei D, Miao J, Zhang X (2017) Fabrication and properties of graphene oxide-grafted-poly(hexadecylacrylate) as a solid-solid phase change material. Compos Sci Technol 149:262–268

    CAS  Google Scholar 

  118. Sturm R, Klett Y, Kindervater C, Voggenreiter H (2014) Failure of CFRP airframe sandwich panels under crash-relevant loading conditions. Compos Struct 112:11–21

    Google Scholar 

  119. Gattas JM, You Z (2014) Quasi-static impact of indented foldcores. Int J Impact Eng 73:15–29

    Google Scholar 

  120. Ramesh M, Rajesh Kumar L, Bhuvaneshwari V (2020) Bamboo fiber reinforced composites. Bamboo Fiber Composites. Springer, Singapore, pp 1–13

    Google Scholar 

  121. Lebée KS (2010) Transverse shear stiffness of a chevron folded core used in sandwich construction. Int J Solids Struct 47:2620–2629

    Google Scholar 

  122. Boatti E, Vasios N, Bertoldi K (2017) origami metamaterials for tunable thermal expansion. Adv Mater 29:1700360

    Google Scholar 

  123. Pratapa PP, Suryanarayana P, Paulino GH (2018) Bloch wave framework for structures with nonlocal interactions: application to the design of origami acoustic metamaterials. J Mech Phys Solids 118:115–132

    Google Scholar 

  124. Gattas JM, You Z (2014) Miura-base rigid origami: parametrizations of curved-crease geometries. J. Mech. Design 136:121404

    Google Scholar 

  125. Tolley MT, Samuel MF, Shuhei M, Daniel A, Daniela R, Robert JW (2014) Self-folding origami: shape memory composites activated by uniform heating. Smart Mater Struct 23(9):094006

    CAS  Google Scholar 

  126. Miyashita S, Isabella DD, Ishwarya A, Byoungkwon A, Cynthia S, Slava A, Daniela R (2015) Folding angle regulation by curved crease design for self-assembling origami propellers. J Mech Robot 7(2):021013

    Google Scholar 

  127. Han B, Zhang Z, Zhang Q, Zhang Q, Lu TJ, Lu B (2017) Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance. Extreme Mech Lett 10:58–69

    Google Scholar 

  128. Shigemune H, Maeda S, Hara Y, Hosoya N, Hashimoto S (2016) Origami robot: a self-folding paper robot with an electro-thermal actuator created by printing. IEEE/ASME Trans Mechatron 21(6):2746–2754

    Google Scholar 

  129. Gattas JM, Wu W, You Z (2013) Miura-base rigid origami: parameterizations of first-level derivative and piecewise geometries. J Mech Design 135:111011

    Google Scholar 

  130. Fischer S, Drechsler K, Kilchert S, Johnson A (2009) Mechanical tests for foldcore base material properties. Compos Part A 40:1941–1952

    Google Scholar 

  131. Fischer S (2015) Aluminium foldcores for sandwich structure application: mechanical properties and FE-simulation. Thin Wall Struct 90:31–41

    Google Scholar 

  132. Ramesh M, Deepa C, Arpitha GR, Gopinath V (2019) Effect of hybridization on properties of hemp-carbon fibre-reinforced hybrid polymer composites using experimental and finite element analysis. World J Eng 16(2):248–259

    CAS  Google Scholar 

  133. Sun Y, Li Y (2017) Prediction and experiment on the compressive property of the sandwich structure with a chevron carbon-fibre-reinforced composite folded core. Compos Sci Technol 150:95–101

    CAS  Google Scholar 

  134. Prabhu L, Krishnaraj V, Gokulkumar S, Sathish S, Sanjay MR, Siengchin S (2020) Mechanical, chemical and sound absorption properties of glass/kenaf/waste tea leaf fiber-reinforced hybrid epoxy composites. J Ind Text. https://doi.org/10.1177/1528083720957392

  135. Heimbs S, Cichosz J, Klaus M, Kilchert S, Johnson AF (2010) Sandwich structures with textile-reinforced composite foldcores under impact loads. Compos Struct 92:1485–1497

    Google Scholar 

  136. Alekseev KA, Zakirov IM, Karimova GG (2011) Geometrical model of creasing roll for manufacturing line of the wedge-shaped folded cores production. Russ Aeronaut 54:104–107

    Google Scholar 

  137. Ramesh M, Rajesh Kumar L (2020) Bioadhesives. Green Adhesives: Preparation, Properties and Applications, pp 145–164. https://doi.org/10.1002/9781119655053.ch7

  138. Morgan J, Spencer PM, Larry LH (2016) An approach to designing origami-adapted aerospace mechanisms. J Mech Des 10(1115/1):4032973

    Google Scholar 

  139. Paez L, Agarwal G, Paik J (2016) Design and analysis of a soft pneumatic actuator with origami shell reinforcement. Soft Rob 3(3):109–119

    Google Scholar 

  140. Vazifehdoostsaleh A, Fatouraee N, Navidbakhsh M, Izadi F (2018) Three dimensional FSI modelling of sulcus vocalis disorders of vocal folds. J Mech 34(6):791–800

    Google Scholar 

  141. Vazifehdoostsaleh A, Fatouraee N, Navidbakhsh M, Izadi F (2017) Numerical analysis of the sulcus vocalis disorder on the function of the vocal folds. J Mech 33(4):513–520

    CAS  Google Scholar 

  142. L. LaRue, B.B. Basily, E.A. Elsayed. 2009. Cushioning systems for impact energy absorption. http://www.ise.rutgers.edu/research/working_paper/paper%2004-016.pdf

  143. Zhou X, Wang H, You Z (2014) Mechanical properties of Miura-based folded cores under quasi-static loads. Thin Wall Struct 82:296–310

    Google Scholar 

  144. Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD. XPS and FT-IR Carbon 45(4):785–796

    CAS  Google Scholar 

  145. Ramesh M (2018) Hemp, jute, banana, kenaf, ramie, sisal fibers. In Handbook of Properties of Textile and Technical Fibres. Woodhead Publishing, pp 301–325

  146. Thomas S Spectroscopic Tools. http://www.science-and-fun.de/tools/

  147. Xu Y, Zhang C, Zhou M, Qun Fu, Zhao C, Minghong Wu, Lei Y (2018) Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun 9(1):1–11

    Google Scholar 

  148. Cipriani E, Zanetti M, Bracco P, Brunella V, Luda MP, Costa L (2016) Crosslinking and carbonization processes in PAN films and nanofibers. Polym Degrad Stab 123:178–188

    CAS  Google Scholar 

  149. Fang W, Yang S, Wang X-L, Yuan T-Q, Sun R-C (2017) Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs). Green Chem 19(8):1794–1827

    CAS  Google Scholar 

  150. Yin H, Hong-Qing Qu, Liu Z, Jiang R-Z, Li C, Zhu M-Q (2019) Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 58:715–723

    CAS  Google Scholar 

  151. Parveen S, Sohel R, Raul F (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater 2013:710175

    Google Scholar 

  152. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33(11):1641–1653

    CAS  Google Scholar 

  153. Wu M, Wang Y, Wei Z, Wang L, Zhuo M, Zhang J, Han X, Ma J (2018) Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J Mater Chem A 6(23):10918–10925

    CAS  Google Scholar 

  154. Titantah JT, Lamoen D (2007) Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam Relat Mater 16(3):581–588

    CAS  Google Scholar 

  155. Ramesh M, Deepa C, Rajesh Kumar L, Sanjay MR, Suchart S (2020) Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: a critical review. J Ind Text. https://doi.org/10.1177/1528083720924730

  156. Chen L-F, Yan Lu, Le Yu, Lou XWD (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10(8):1777–1783

    CAS  Google Scholar 

  157. Wang C, Kaneti YV, Bando Y, Lin J, Liu C, Li J, Yamauchi Y (2018) Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater Horiz 5(3):394–407

    CAS  Google Scholar 

  158. Hao R, HaoLan CK, Wang H, Guo L (2018) Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128:224–230

    CAS  Google Scholar 

  159. Quan D, Urdaniz JL, Ivankovic A (2018) Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes. Mater Des 143:81–92

    CAS  Google Scholar 

  160. Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials-a review of the current status. Nanoscale 7(23):10294–10329

    CAS  Google Scholar 

  161. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2):393–415

    CAS  Google Scholar 

  162. Rocha LS, Pereira D, Sousa É, Otero M, Esteves VI, Calisto V (2020) Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: a review. Sci Total Environ 718:137272

    CAS  Google Scholar 

  163. Hassan MF, Sabri MA, Fazal H, Hafeez A, Shezad N, Hussain M (2020) Recent trends in activated carbon fibers production from various precursors and applications—a comparative review. J Anal Appl Pyrolysis 145:104715

    CAS  Google Scholar 

  164. Rahimian R, Zarinabadi S (2020) A review of studies on the removal of methylene blue dye from industrial wastewater using activated carbon adsorbents made from almond bark. Prog Chem Biochem Res 3(3):251–268

    CAS  Google Scholar 

  165. Anfar Z, Ait Ahsaine H, Zbair M, Amedlous A, Ait El Fakir A, Jada A, El Alem N (2020) Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review. Crit Rev Environ Sci Technol 50(10):1043–1084

    CAS  Google Scholar 

  166. Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK (2020) Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J Basic Appl Sci 27(1):208–238

    Google Scholar 

  167. Ramesh M, Rajeshkumar L, Balaji D (2021) Aerogels for Insulation Applications. Aerogels II Prep Prop Appl 98:57–76

    Google Scholar 

  168. Fan Y, Fowler GD, Zhao M (2020) The past, present and future of carbon black as a rubber reinforcing filler–a review. J Clean Prod 247:119115

    CAS  Google Scholar 

  169. Junqing X, Jiaxue Y, Jianglin X, Chenliang S, Wenzhi H, Juwen H, Guangming L (2020) High-value utilization of waste tires: a review with focus on modified carbon black from pyrolysis. Sci Total Environ 140235

  170. Khodabakhshi S, Fulvio PF, Andreoli E (2020) Carbon black reborn: structure and chemistry for renewable energy harnessing. Carbon 162:604–649

    CAS  Google Scholar 

  171. Szadkowski B, Marzec A, Zaborski M (2020) Use of carbon black as a reinforcing nano-filler in conductivity-reversible elastomer composites. Polym Testing 81:106222

    CAS  Google Scholar 

  172. Babu B (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2(5):393–414

    CAS  Google Scholar 

  173. Roy C, Chaala A, Darmstadt H (1999) The vacuum pyrolysis of used tires: end-uses for oil and carbon black products. J Anal Appl Pyrol 51(1–2):201–221

    CAS  Google Scholar 

  174. González-Arias J, Marta ES, Elia JM, Camila C, Ana A-S, Rubén G, Jorge C-J (2020) Hydrothermal carbonization of olive tree pruning as a sustainable way for improving biomass energy potential. Effect of reaction parameters on fuel properties. Processes 8(10):1201

    Google Scholar 

  175. Li Z, Liu J, Jiang K, Thundat T (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–169

    CAS  Google Scholar 

  176. Deng L, Young RJ, Kinloch IA, Abdelkader AM, Holmes SM, De Haro-Del DA, Rio SJ, Eichhorn. (2013) Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl Mater Interfaces 5(20):9983–9990

    CAS  Google Scholar 

  177. Deng L, Zhong W, Wang J, Zhang P, Fang H, Yao L, Liu X, Ren X, Li Y (2017) The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. ElectrochimicaActa 228:398–406

    CAS  Google Scholar 

  178. Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Wang Y, Xiang-Fa Wu, Zhu Z, Fong H (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sour 247:134–141

    CAS  Google Scholar 

  179. Bhuvaneswari V, Priyadharshini M, Deepa C, Balaji D, Rajeshkumar L, Ramesh M (2021) Deep learning for material synthesis and manufacturing systems: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.351

    Article  Google Scholar 

  180. Duan Bo, Xiang Gao Xu, Yao YF, Huang L, Zhou J, Zhang L (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491

    CAS  Google Scholar 

  181. Yang Y, Chuchu C, Dagang L (2018) Electrodes based on cellulose nanofibers/carbon nanotubes networks, polyaniline nanowires and carbon cloth for supercapacitors. Mater Res Express 6(3):035008

    Google Scholar 

  182. Liu W-J, Tian Ke, He Y-R, Jiang H, Han-Qing Yu (2014) High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environ Sci Technol 48(23):13951–13959

    CAS  Google Scholar 

  183. Mohan D, Kumar S, Srivastava A (2014) Fluoride removal from ground water using magnetic and nonmagnetic corn stoverbiochars. Ecol Eng 73:798–808

    Google Scholar 

  184. Shah DO (2002) Fine particles: Synthesis, characterization, and mechanisms of growth. Edited by T. Sugimoto, surfactant science series. J Nanopar Res 92(4):179. https://doi.org/10.1023/A:1020110320804

  185. Shen Y et al (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68(3):312–319

    CAS  Google Scholar 

  186. Kolthoff I (1932) Theory of coprecipitation The formation and properties of crystalline precipitates. J Phys Chem 36(3):860–881

    CAS  Google Scholar 

  187. Jeong JR et al (2004) Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys Status Solidi (B) 241(7):1593–1596

    CAS  Google Scholar 

  188. Titirici MM, Thomas A, Antonietti M (2007) Replication and coating of silica templates by hydrothermal carbonization. Adv Func Mater 17(6):1010–1018

    CAS  Google Scholar 

  189. Manafi S, Nadali H, Irani H (2008) Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater Lett 62(26):4175–4176

    CAS  Google Scholar 

  190. Titirici M-M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6):787–789

    CAS  Google Scholar 

  191. Jamari SS, Howse JR (2012) The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenergy 47:82–90

    CAS  Google Scholar 

  192. Liu Z, Zhang F-S, Wu J (2010) Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89(2):510–514

    CAS  Google Scholar 

  193. Sevilla M, Macia-Agullo JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35(7):3152–3159

    CAS  Google Scholar 

  194. Xiao L-P et al (2012) Hydrothermal carbonization of lignocellulosic biomass. Biores Technol 118:619–623

    CAS  Google Scholar 

  195. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841

    CAS  Google Scholar 

  196. Titirici M-M et al (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5(5):6796–6822

    Google Scholar 

  197. Hu B et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828

    CAS  Google Scholar 

  198. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry-A European Journal 15(16):4195–4203

    CAS  Google Scholar 

  199. Wang Q et al (2001) Monodispersed hard carbon spherules with uniform nanopores. Carbon 39(14):2211–2214

    CAS  Google Scholar 

  200. Jain A, Balasubramanian R, Srinivasan M (2016) Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem Eng J 283:789–805

    CAS  Google Scholar 

  201. Falco C et al (2013) Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–355

    CAS  Google Scholar 

  202. Falco C, Baccile N, Titirici M-M (2011) Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chem 13(11):3273–3281

    CAS  Google Scholar 

  203. Cui X, Antonietti M, Yu SH (2006) Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small 2(6):756–759

    CAS  Google Scholar 

  204. Zhang S et al (2010) Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1217(29):4757–4764

    CAS  Google Scholar 

  205. Lim YS, Lai CW, Hamid SBA (2017) Porous 3D carbon decorated Fe3O4 nanocomposite electrode for highly symmetrical supercapacitor performance. RSC Adv 7(37):23030–23040

    CAS  Google Scholar 

  206. Tang Z et al (2016) Enhanced removal of Pb (II) by supported nanoscale Ni/Fe on hydrochar derived from biogas residues. Chem Eng J 292:224–232

    CAS  Google Scholar 

  207. Titirici M-M, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39(1):103–116

    CAS  Google Scholar 

  208. Tang L et al (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6(6):5102–5110

    CAS  Google Scholar 

  209. Zang S, Zhou X, Wang H, You Z (2016) Foldcores made of thermoplastic materials: experimental study and finite element analysis. Thin Wall Struct 100:170–179

    Google Scholar 

  210. Wang C, Zaouk R, Madou M (2006) Local chemical vapour deposition of carbon nanofibers from photoresist. Carbon 44:3073–3077

    CAS  Google Scholar 

  211. De Volder MF, Vansweevelt R, Wagner P, Reynaerts D, Van HC, Hart AJ (2011) Hierarchical carbon nanowire microarchitectures made by plasma-assisted pyrolysis of photoresist. ACS Nano 5:6593–6600

    Google Scholar 

  212. Thakur V, Singha A, Thakur M (2013) Synthesis of natural cellulose–based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32(S1):E741–E748

    CAS  Google Scholar 

  213. Methner M et al (2010) Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—Part B: results from 12 field studies. J Occup Environ Hyg 7(3):163–176

    CAS  Google Scholar 

  214. Wu Z et al (2012) General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv Mater 24(4):485–491

    CAS  Google Scholar 

  215. Wang W et al (2012) The use of graphene-based magnetic nanoparticles as adsorbent for the extraction of triazole fungicides from environmental water. J Sep Sci 35(17):2266–2272

    CAS  Google Scholar 

  216. Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896–6902

    CAS  Google Scholar 

  217. Oliveira LC et al (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40(12):2177–2183

    CAS  Google Scholar 

  218. Suri K et al (2002) Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sens Actuators B Chem 81(2–3):277–282

    CAS  Google Scholar 

  219. Xie J et al (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    CAS  Google Scholar 

  220. Zhi M et al (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    CAS  Google Scholar 

  221. Chen Y et al (2012) Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. J Mater Chem 22(11):5006–5012

    CAS  Google Scholar 

  222. Daniel ED, Levine I (1960) Experimental and theoretical investigation of the magnetic properties of iron oxide recording tape. J Acoust Soc Am 32(1):1–15

    Google Scholar 

  223. Quan H et al (2016) One-pot synthesis of α-Fe2O3nanoplates-reduced graphene oxide composites for supercapacitor application. Chem Eng J 286:165–173

    CAS  Google Scholar 

  224. Zhang C, Li Y, Wang P, Zhang H (2020) Electrospinning of nanofibers: potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 19(2):479–502

    CAS  Google Scholar 

  225. Zhu X et al (2014) Novel and high-performance magnetic carbon composite prepared from waste hydrochar for dye removal. ACS Sustain Chem Eng 2(4):969–977

    CAS  Google Scholar 

  226. Cao F et al (2009) 3D Fe3S4 flower-like microspheres: high-yield synthesis via a biomolecule assisted solution approach, their electrical, magnetic and electrochemical hydrogen storage properties. Dalton Trans 42:9246–9252

    Google Scholar 

  227. Berry CC, Curtis AS (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198–R206

    CAS  Google Scholar 

  228. Lok C (2001) Picture perfect. Nature 412(6845):372–375

    CAS  Google Scholar 

  229. Ramesh M, Rajeshkumar L, Balaji D, Bhuvaneswari V (2021) Green composite using agricultural waste reinforcement. In: Thomas S, Balakrishnan P (eds) Green composites. Materials horizons: from nature to nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9643-8_2

  230. Halavaara J et al (2002) Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging. Acta Radiol 43(2):180–185

    CAS  Google Scholar 

  231. Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13(4):283–287

    CAS  Google Scholar 

  232. Barcena C, Sra AK, Gao J (2009) Applications of magnetic nanoparticles in biomedicine. Nanoscale magnetic materials and applications. Springer, New York, pp 591–626

    Google Scholar 

  233. Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44(7):1687–1702

    Google Scholar 

Download references

Funding

No funding received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, M., Rajeshkumar, L. & Bhoopathi, R. Carbon substrates: a review on fabrication, properties and applications. Carbon Lett. 31, 557–580 (2021). https://doi.org/10.1007/s42823-021-00264-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00264-z

Keywords

Navigation