Skip to main content
Log in

Preparation and characterization of chars and activated carbons from wood wastes

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Preparation of activated carbons from wood waste including northern hardwood pins-fines and wood dust was conducted and then compared through the following methods: physical pyrolysis and CO2 activation, vacuum pyrolysis and CO2 activation, CO2 gasification, and vacuum CO2 gasification processes. Experimental results show that chars and activated carbons with high surface area and pore volume are produced from wood waste through a vacuum CO2 pyrolysis/gasification process. The effects of operation variables of vacuum pyrolysis/gasification on the properties of chars and activated carbons were investigated to identify and optimize the temperature, heating time, and heating rate. The optimized vacuum CO2 gasification conditions were found to be a temperature of 800 °C, a heating rate of 20 °C/min, and a holding time of 2 h respectively. The prepared wood-chars and activated carbons were characterized by nitrogen physisorption, scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectra determined any changes in the surface functional groups produced during different preparation stages.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Saleem J, Shahid U, Hijab M et al (2019) Production and applications of activated carbons as adsorbents from olive stones. Biomass Conv Bioref 9:775–802

    Article  CAS  Google Scholar 

  2. Peng G, Gramm F, Ludwiga C, Vogel F (2015) Effect of carbon surface functional groups on the synthesis of Ru/C catalysts for supercritical water gasification. Catal Sci Technol 5:3658–3666

    Article  CAS  Google Scholar 

  3. Bagheri S, Julkapli NM (2016) Effect of hybridization on the value-added activated carbon materials. Int J Ind Chem 7:249–264

    Article  CAS  Google Scholar 

  4. Adegoke KA, Bello OS (2015) Dye sequestration using agricultural wastes as adsorbents. Water Resour Indus 12:8–24

    Article  Google Scholar 

  5. Menendez-Diaz JA, Martin-Gullon I (2006) Types of carbon adsorbents and their production. In: Bandosz TJ (ed) Activated carbon surfaces in environmental remediation. Academic Press, New York, pp 1–47

    Google Scholar 

  6. Schlesinger WH, Bernhardt ES (2013) Chapter 5 the biosphere: the carbon cycle of terrestrial ecosystems. Biogeochemistry: an analysis of global change, 3rd edn. Academic Press, Boston, pp 135–171

    Chapter  Google Scholar 

  7. Jahanban-Esfahlan A, Ostadrahimi A, Tabibiazar M, Amarowicz R (2019) A comparative review on the extraction, antioxidant content and antioxidant potential of different parts of walnut (Juglans regia L.) fruit and tree. Molecules 24:2133

    Article  CAS  Google Scholar 

  8. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  9. Amirza MAR, Adib MMR, Hamdan R (2017) Preface. MATEC Web Conf 103:1–12

    Article  CAS  Google Scholar 

  10. Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks. 1 Effect on the quality of fast pyrolysis oils. Energy Fuels 10:293–298

    Article  CAS  Google Scholar 

  11. Dias JM, Alvim-Ferraz MC, Almeida MF, Rivera-Utrilla J, Sanchez-Polo M (2007) Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manag 85:833–846

    Article  CAS  Google Scholar 

  12. Falk B (1997) Opportunities for the woodwaste resource. For Prod J 47:17–22

    CAS  Google Scholar 

  13. Prairie Village KS (1998) Characterization of building-related construction and demolition debris in the United States. The U.S. Environmental Protection Agency Municipal and Industrial Solid Waste Division Office of Solid Waste, Prairie Village, Kansas, 1998.

  14. Nelson L, Park S, Hubbe MA (2018) Thermal depolymerization of biomass with emphasis on gasifier design and best method for catalytic hot gas conditioning. BioRes 13:4630–4727

    Article  Google Scholar 

  15. Hanks L (1977) Predicted cubic-foot yields of lumber, sawdust, and sawmill residue from the sawtimber portions of hardwood trees. Research Paper NE-380. USDA Forest Service, Northeastern Experiment Station, Upper Darby, Pennsylvania.

  16. Ince PJ, McKeever DB (1995) Recovery of paper and wood for recycling: actual and potential. General Technical Report FPL-GTR88. USDA Forest Service, Forest Products Laboratory, Madison, p 13

    Book  Google Scholar 

  17. Grigoriou AH (2003) Waste paper–wood composites bonded with isocyanate. Wood Sci Technol 37:79–90

    Article  CAS  Google Scholar 

  18. Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sustain Energy Rev 16:4406–4414

    Article  CAS  Google Scholar 

  19. Hata T, Vystavel T, Bronsveld P, De Hosson J, Kikuchi H, Nishimiya K, Imamura Y (2004) Catalytic carbonization of wood charcoal: graphite or diamond? Carbon 42:961–964

    Article  CAS  Google Scholar 

  20. Yan Q, Li J, Zhang X, Zhang J, Cai Z (2019) Mass production of graphene materials from solid carbon sources using a molecular cracking and welding method. J Mater Chem A 7:13978–13985

    Article  CAS  Google Scholar 

  21. Rosales-Calderon O, Arantes V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels 12:240

    Article  CAS  Google Scholar 

  22. Shi K, Yan J, Menéndez JA, Luo X, Yang G, Chen Y, Lester E, Wu T (2020) Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Front Chem 8:3

    Article  CAS  Google Scholar 

  23. Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon. A critical review. Chemosphere 58:1049–1070

    Article  CAS  Google Scholar 

  24. Hayashi JI, Horikawa T, Takeda I, Muroyama K, Ani F (2002) Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40:2381–2386

    Article  CAS  Google Scholar 

  25. Machrouhi A et al (2019) Statistical optimization of activated carbon from Thapsia transtagana stems and dyes removal efficiency using central composite design. J Sci Adv Mater Devices 4:544–553

    Article  Google Scholar 

  26. Şahin Ö, Saka C (2013) Preparation and characterization of activated carbon from acorn shell by physical activation with H2O–CO2 in two-step pretreatment. Bioresour Technol 136:163–168

    Article  CAS  Google Scholar 

  27. Bae W, Kim J, Chung J (2014) Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties. J Air Waste Manag Assoc 64:879–886

    Article  CAS  Google Scholar 

  28. Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63:117–132

    Article  CAS  Google Scholar 

  29. Libbrecht W, Vandaele K, De Buysser K, Verberckmoes A, Thybaut J, Poelman H, De Clercq J, Van Der Voort P (2015) Tuning the pore geometry ofordered mesoporous carbons for enhanced adsorption of bisphenol-a. Materials 8:1652–1665

    Article  CAS  Google Scholar 

  30. Dufour A, Celzard A, Fierro V, Martin E, Broust F, Zoulalian A (2008) Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Appl Catal A Gen 346:164–173

    Article  CAS  Google Scholar 

  31. Carrier M, Hardie AG, Uras U, Gorgens J, Knoetze JH (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32

    Article  CAS  Google Scholar 

  32. Plante P, Roy C, Chornet E (1988) CO gasification of wood charcoals derived from vacuum and atmospheric pyrolysis. Can J Chem Eng 66:307–312

    Article  CAS  Google Scholar 

  33. Ismadji S, Sudaryanto Y, Hartono SB, Setiawan LE, Ayucitra A (2005) Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization. Bioresour Technol 96:1364–1369

    Article  CAS  Google Scholar 

  34. Cao N, Darmstadt H, Roy C (2001) Activated carbon produced from charcoal obtained by vacuum pyrolysis of softwood bark residues. Energy Fuels 15:1263–1269

    Article  CAS  Google Scholar 

  35. Cao NZ, Darmstadt H, Soutric F, Roy C (2002) Thermogravimetric study on the steam activation of charcoal obtained by pyrolysis of bark residue. Carbon 40:471–479

    Article  CAS  Google Scholar 

  36. ASTM D4442-07 (2007) Standard test methods for direct moisture content measurement of wood and wood-based materials. ASTM Int., West Conshohocken

    Google Scholar 

  37. ASTM D1102-84 (2007) Standard test method for ash in wood. ASTM Int., West Conshohocken

    Google Scholar 

  38. Yan Q, Boardman CR, Cai Z (2020) Thermal stability of metal-lignin composites prepared by coprecipitation method. Thermochim Acta 690:178659

    Article  CAS  Google Scholar 

  39. Leal GF, Ramos LA, Barrett DH, Curvelo AAS, Rodella CB (2015) A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process. Thermochim Acta 616:9–13

    Article  CAS  Google Scholar 

  40. Yan Q, Li J, Zhang J, Cai Z (2018) Thermal decomposition of kraft lignin under gas atmospheres of argon, hydrogen, and carbon dioxide. Polymers 10:729

    Article  CAS  Google Scholar 

  41. González-Díaz E, Alonso-López JM (2017) Characterization by thermogravimetric analysis of the wood used in Canary architectural heritage. J Cult Herit 23:111–118

    Article  Google Scholar 

  42. Gašparovič L, Koreňová Z, Jelemenský L (2010) Kinetic study of wood chips decomposition by TGA. Chem Pap 64:174–181

    Article  CAS  Google Scholar 

  43. Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera AJ (2010) Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolysis of wood. Mater Res 13:375–379

    Article  CAS  Google Scholar 

  44. Zghari B, Doumenq P, Romane A, Boukir A (2017) GC-MS, FTIR and 1H, 13C NMR structural analysis and identification of phenolic compounds in olive mill wastewater extracted from oued Oussefrou effluent (Beni Mellal-Morocco). J Mater Environ Sci 8:4496–4509

    CAS  Google Scholar 

  45. Awal A, Sain M (2011) Spectroscopic studies and evaluation of thermorheological properties of softwood and hardwood lignin. J Appl Polym Sci 122:956–963

    Article  CAS  Google Scholar 

  46. Guo Y, Bustin RM (1998) FTIR spectroscopy and reflectance of modern charcoals and fungal decayed woods: implications for studies of inertinite in coals. Int J Coal Geol 37:29–53

    Article  CAS  Google Scholar 

  47. Hajji L, Boukir A, Assouik J, Pessanha S, Figueirinhas JL, De Carvalho ML (2016) Artificial ageing paper to assess long term effects of conservative treatment. Monitoring by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and Energy dispersive X-ray fluorescence (EDXRF). Microchem J 124:646–656

    Article  CAS  Google Scholar 

  48. Emmanuel V, Odile B, Céline R (2015) FTIR spectroscopy of woods: a new approach to study the weathering of the carving face of a sculpture. Spectrochim Acta A Mol Biomol Spectrosc 136:1255–1259

    Article  CAS  Google Scholar 

  49. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  Google Scholar 

  50. Gronert S (2006) Evidence that alkyl substitution provides little stabilization to radicals: the C−C bond test and the nonbonded interaction contradiction. J Org Chem 71:7045–7048

    Article  CAS  Google Scholar 

  51. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis 82:170–177

    Article  CAS  Google Scholar 

  52. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27:562–567

    Article  CAS  Google Scholar 

  53. Kishimoto T, Uraki Y, Ubukata M (2006) Chemical synthesis of β-O-4 type artificial lignin. Org Biomol Chem 4:1343–1347

    Article  CAS  Google Scholar 

  54. Zhao J, Wang X, Hu J, Liu Q, Shen D, Xiao R (2014) Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS. Polym Degrad Stab 108:133–138

    Article  CAS  Google Scholar 

  55. Safdari MS, Rahmati M, Amini E, Howarth JE, Berryhill JP, Dietenberger M, Weise DR, Fletcher TH (2018) Characterization of pyrolysis products from fast pyrolysis of live and dead vegetation native to the Southern United States. Fuel 229:151–166

    Article  CAS  Google Scholar 

  56. Zaman CZ, Pal K, Yehye WA, Sagadevan S, Shah ST, Adebisi GA, Marliana E, Rafique RF, Johan RB (2017) Pyrolysis: a sustainable way to generate energy from waste. Book: pyrolysis. InTech, London, pp 3–34. https://doi.org/10.5772/intechopen.69036

    Chapter  Google Scholar 

  57. Yan Q, Toghiani H, Yu F, Cai Z, Zhang J (2011) Effects of pyrolysis conditions on yield of bio-chars from pine chips. For Prod J 61:367–371

    CAS  Google Scholar 

  58. Lua AC, Yang T (2004) Effects of vacuum pyrolysis conditions on the characteristics of activated carbons derived from pistachio-nut shells. J Colloid Interface Sci 276:364–372

    Article  CAS  Google Scholar 

  59. Nowicki P, Pietrzak R (2010) Carbonaceous adsorbents prepared by physical activation of pine sawdust and their application for removal of NO2 in dry and wet conditions. Bioresour Technol 101:5802–5807

    Article  CAS  Google Scholar 

  60. Tseng RL, Wu FC, Juang RS (2003) Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41:487–495

    Article  CAS  Google Scholar 

  61. Zhang T, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC (2004) Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem Eng J 105:53–59

    Article  CAS  Google Scholar 

  62. Malik PK (2004) Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. J Hazard Mater 113:81–88

    Article  CAS  Google Scholar 

  63. Wu FC, Tseng RL, Juang RS (2005) Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water. Sep Purif Technol 47:10–19

    Article  CAS  Google Scholar 

  64. Ngernyen Y, Tangsathitkulchai C, Tangsathitkulchai M (2006) Porous properties of activated carbon produced from Eucalyptus and Wattle wood by carbon dioxide activation. Korean J Chem Eng 23:1046–1054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the USDA Forest Service through Grant Nos. 19-JV-11111124-053 and 19-JV-11111124-063. The authors would like to acknowledge Domtar Corp., North Carolina for providing wood pins-fines and wood dust samples for this study. Neil Gribbins and Timothy Ketelboeter at USDA Forest Products Laboratory provided editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Li, J. & Cai, Z. Preparation and characterization of chars and activated carbons from wood wastes. Carbon Lett. 31, 941–956 (2021). https://doi.org/10.1007/s42823-020-00205-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00205-2

Keywords

Navigation