Skip to main content
Log in

Vertically aligned carbon nanotubes-coated aluminium foil as flexible supercapacitor electrode for high power applications

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Vertically Aligned Carbon Nanotubes (VACNTs)-coated flexible aluminium (Al) foil is studied as an electrode for supercapacitor applications. VACNTs are grown on Al foil inside thermal Chemical Vapor Deposition (CVD) reactor. 20 nm thick layer of Fe is used as a catalyst while Ar, H2 and C2H2 are used as precursor gases. The effect of growth temperature on the structure of CNTs is studied by varying the temperature of CVD reactor from 550 °C to 625 °C. Better alignment of VACNTs arrays on Al foil is recorded at 600 °C growth temperature in comparison to other processing temperatures. Cyclic voltammetry results shows that VACNTs-coated Al foil has a specific capacitance of ~ 3.01 F/g at a scan rate of 50 mV/s. The direct growth of VACNT array results in better contact with Al foil and thus low ESR values observed in impedance spectroscopy analysis. This leads to a fast charge–discharge cycle as well as a very high value of power density (187.79 kW/kg) suitable for high power applications. Moreover, wettability study shows that the fabricated VACNT electrode has a contact angle of more than 152° which signifies that it is a superhydrophobic surface and hence shows lower specific capacitance in comparison to reported values for VACNT array. Therefore, it is necessary to develop suitable post-processing strategies to make VACNTs hydrophilic to realize their full potential in supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li L, Wu Z, Yuan S, Zhang X-B (2014) Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ Sci 7:2101. https://doi.org/10.1039/c4ee00318g

    Article  CAS  Google Scholar 

  2. Ostfeld AE, Gaikwad AM, Khan Y, Arias AC (2016) High-performance flexible energy storage and harvesting system for wearable electronics. Sci Rep 6:4. https://doi.org/10.1038/srep26122

    Article  CAS  Google Scholar 

  3. Chen T, Dai L (2014) Flexible supercapacitors based on carbon nanomaterials. J Mater Chem A 2:10756. https://doi.org/10.1039/c4ta00567h

    Article  CAS  Google Scholar 

  4. Balamurugan J, Nguyen TT, Aravindan V, Kim NH, Lee SH, Lee JH (2019) All ternary metal selenide nanostructures for high energy flexible charge storage devices. Nano Energy 65:103999. https://doi.org/10.1016/j.nanoen.2019.103999

    Article  CAS  Google Scholar 

  5. Ghai V, Baranwal A, Singh H, Agnihotri PK (2019) Design and fabrication of a multifunctional flexible absorber (Flexorb) in the UV–Vis–NIR wavelength range. Adv Mater Technol 1:1900513. https://doi.org/10.1002/admt.201900513

    Article  CAS  Google Scholar 

  6. Li H, Tang Z, Liu Z, Zhi C (2019) Evaluating flexibility and wearability of flexible energy storage devices. Joule 3:613–619. https://doi.org/10.1016/j.joule.2019.01.013

    Article  Google Scholar 

  7. Jin L, Wei K, Xia Y, Liu B, Zhang K, Gao H et al (2019) Tree leaves-derived three-dimensional porous networks as separators for graphene-based supercapacitors. Mater Today Energy 14:100348. https://doi.org/10.1016/j.mtener.2019.100348

    Article  Google Scholar 

  8. Helseth LE (2019) Modelling supercapacitors using a dynamic equivalent circuit with a distribution of relaxation times. J Energy Storage 25:100912. https://doi.org/10.1016/j.est.2019.100912

    Article  Google Scholar 

  9. Afif A, Rahman SM, Tasfiah Azad A, Zaini J, Islan MA, Azad AK (2019) Advanced materials and technologies for hybrid supercapacitors for energy storage – a review. J Energy Storage 25:100852. https://doi.org/10.1016/j.est.2019.100852

    Article  Google Scholar 

  10. Li J, Qiao J, Lian K (2019) Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2019.08.012

    Article  Google Scholar 

  11. Cossutta M, Vretenar V, Centeno TA, Kotrusz P, McKechnie J, Pickering SJ (2020) A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J Cleaner Prod 242:118468. https://doi.org/10.1016/j.jclepro.2019.118468

    Article  CAS  Google Scholar 

  12. Cao J, Mei Q, Wu R, Wang W (2019) Flower-like nickel–cobalt layered hydroxide nanostructures for super long-life asymmetrical supercapacitors. Electrochim Acta 321:134711. https://doi.org/10.1016/j.electacta.2019.134711

    Article  CAS  Google Scholar 

  13. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245

    Article  CAS  Google Scholar 

  14. Zhu Z, Wang G, Sun M, Li X, Li C (2011) Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim Acta 56:1366–1372

    Article  CAS  Google Scholar 

  15. Xu X, Li J, Li Y, Ni B, Liu X, Pan L (2018) Selection of Carbon Electrode Materials. In: Ahualli S, Delgado ÁV (eds) Interface Science and Technology. Elsevier, London

    Google Scholar 

  16. Lück J, Latz A (2018) Modeling of the electrochemical double layer and its impact on intercalation reactions. Phys Chem Chem Phys 20:27804–27821. https://doi.org/10.1039/C8CP05113E

    Article  Google Scholar 

  17. Favaro M, Jeong B, Ross PN, Yano J, Hussain Z, Liu Z et al (2016) Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat Commun 7:1–8. https://doi.org/10.1038/ncomms12695

    Article  CAS  Google Scholar 

  18. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280. https://doi.org/10.1016/j.mattod.2013.07.002

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang K, Zou J, Wang X, Sun L, Wang T et al (2017) Functionalized horizontally aligned CNT array and random CNT network for CO2 sensing. Carbon 117:263–270. https://doi.org/10.1016/j.carbon.2017.03.012

    Article  CAS  Google Scholar 

  20. Lee CY, Tsai HM, Chuang HJ, Li SY, Lin P, Tseng TY (2005) Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J Electrochem Soc 152:A716–A720

    Article  CAS  Google Scholar 

  21. Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782. https://doi.org/10.1002/adma.201400910

    Article  CAS  Google Scholar 

  22. Ghai V, Singh H, Agnihotri PK (2019) Dandelion-like carbon nanotubes for near perfect black surfaces. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.9b01950

    Article  Google Scholar 

  23. Ghai V, Singh H, Agnihotri PK (2019) Near perfect thin film flexible broadband optical absorber with high thermal/electrical conductivity. J Appl Poly Sci 1:48855. https://doi.org/10.1002/app.48855

    Article  CAS  Google Scholar 

  24. Ghai V, Bedi HS, Bhinder J, Chauhan A, Singh H, Agnihotri PK (2020) Catalytic-free growth of VACNTs for energy harvesting. Full Nano Carbon Nanostruct 1:6

    Google Scholar 

  25. Li WZ, Wen JG, Ren ZF (2002) Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Appl Phys A Mater Sci Process 74:397–402. https://doi.org/10.1007/s003390201284

    Article  CAS  Google Scholar 

  26. Xiang R, Luo G, Yang Z, Zhang Q, Qian W, Wei F (2007) Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology 18:415703. https://doi.org/10.1088/0957-4484/18/41/415703

    Article  CAS  Google Scholar 

  27. Pham QN, Larkin LS, Lisboa CC, Saltonstall CB, Qiu L, Schuler JD et al (2017) Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Physica Status Solidi (A) 214:1600852

    Article  Google Scholar 

  28. Aksak M, Kir S, Selamet Y (2009) Effect of the growth temperature on carbon nanotubes grown by thermal chemical vapor deposition method. J Optoelectron Adv Mater 1:281–248

    Google Scholar 

  29. Yang Z-P, Ci L, Bur JA, Lin S-Y, Ajayan PM (2008) Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett 8:446–451. https://doi.org/10.1021/nl072369t

    Article  CAS  Google Scholar 

  30. Kyung SJ, Lee YH, Kim CW, Lee JH, Yeom GY (2006) Field emission properties of carbon nanotubessynthesized by capillary type atmospheric pressure plasmaenhanced chamical vapor deposition at low temperature. Carbon 44:1530–1534

    Article  CAS  Google Scholar 

  31. Phokaratkul D, Mensing JP, Jaruwongrangsee K, Lomas T, Tuantranont A, Wisitsoraat A (2015) Novel 3D graphene foam Polyaniline Carbon nanotubes Supercapacitor Prepared by Electropolymerization. Proceedings of the 15th International Conference on Nanotechnology. IEEE, Rome

    Google Scholar 

  32. Dogru IB, Durukan MB, Turel O, Unalan HE (2016) Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils. Prog Nat Sci Mater Internat 26:232–236. https://doi.org/10.1016/j.pnsc.2016.05.011

    Article  CAS  Google Scholar 

  33. Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN et al (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci 106:6044–6047. https://doi.org/10.1073/pnas.0900155106

    Article  Google Scholar 

  34. Belhachemi Raël Davat (2000) A physical based model of power electric double-layer supercapacitors. IEEE Trans Indu Appl 1:3069–3076

    Google Scholar 

  35. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, BA

    Book  Google Scholar 

  36. Kulal PM, Dubal DP, Lokhande CD, Fulari VJ (2011) Chemical synthesis of Fe2O3 thin films for supercapacitor application. J Alloy Compd 509:2567–2571. https://doi.org/10.1016/j.jallcom.2010.11.091

    Article  CAS  Google Scholar 

  37. Aval LF, Ghoranneviss M, Pour GB (2018) High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 4:e00862. https://doi.org/10.1016/j.heliyon.2018.e00862

    Article  Google Scholar 

  38. Rose MF, Merryman SA (1996) Electrochemical capacitor technology for actuator applications. IEEE 1:245–250

    Google Scholar 

  39. Saghafi M, Mahboubi F, Mohajerzadeh S, Holze R (2014) Preparation of vertically aligned carbon nanotubes and their electrochemical performance in supercapacitors. Synth Met 195:252–259. https://doi.org/10.1016/j.synthmet.2014.06.012

    Article  CAS  Google Scholar 

  40. Hsia B, Marschewski J, Wang S, In JB, Carraro C, Poulikakos D et al (2014) Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 25:055401. https://doi.org/10.1088/0957-4484/25/5/055401

    Article  CAS  Google Scholar 

  41. Cui K, Wardle BL (2019) Breakdown of native oxide enables multifunctional, free-form carbon nanotube-metal hierarchical architectures. ACS Appl Mater Interface 11:35212–35220. https://doi.org/10.1021/acsami.9b08290

    Article  CAS  Google Scholar 

  42. Taberna PL, Simon P, Fauverque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

    Article  CAS  Google Scholar 

  43. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  44. Dörfler S, Felhösi I, Marek T, Thieme S, Althues H, Nyikos L et al (2013) High power supercap electrodes based on vertical aligned carbon nanotubes on aluminum. J Power Sources 227:218–228. https://doi.org/10.1016/j.jpowsour.2012.11.068

    Article  CAS  Google Scholar 

  45. Kavian R, Vicenzo A, Bestetti M (2011) Growth of carbon nanotubes on aluminium foil for supercapacitors electrodes. J Mater Sci 46:1487–1493. https://doi.org/10.1007/s10853-010-4950-1

    Article  CAS  Google Scholar 

  46. Reit R, Nguyen J, Ready WJ (2013) Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates. Electrochim Acta 91:96–100. https://doi.org/10.1016/j.electacta.2012.12.058

    Article  CAS  Google Scholar 

  47. Karumuri AK, He L, Mukhopadhyay SM (2015) Tuning the surface wettability of carbon nanotube carpets in multiscale hierarchical solids. Appl Surf Sci 327:122–130. https://doi.org/10.1016/j.apsusc.2014.10.154

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors acknowledge the financial support provided by Department of Science and Technology (DST) India grant with sanction number CRG/2018/000265 to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viney Ghai or Prabhat K. Agnihotri.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghai, V., Chatterjee, K. & Agnihotri, P.K. Vertically aligned carbon nanotubes-coated aluminium foil as flexible supercapacitor electrode for high power applications. Carbon Lett. 31, 473–481 (2021). https://doi.org/10.1007/s42823-020-00176-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00176-4

Keywords

Navigation