Skip to main content

Advertisement

Log in

Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self-activation of biomass: excellent rate capability and cycle stability

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Energy and environmental are always two major challenges for the sustainable development of the modern human being. For avoiding the serious environmental pollution caused in the fabrication process of porous carbon, a popular energy storage material, we reported a facile, green and activating agent free route hereby directly carbonizing a special biomass, Glebionis coronaria. A nitrogen doped hierarchical porous carbon with a specific surface area of up to 1007 m2 g−1 and a N doping content of up to 2.65 at.% was facilely fabricated by employing the above route. Benefiting from the peculiarly hierarchical porous morphology, enhanced wettability and improved conductivity, the obtained material exhibits superior capacitance performance, which capacitance reaches up to 205 F g−1 under two-electrode configuration, and no capacitance loss is observed after 5000 cycles. Meanwhile, the capacitance retention of the obtained material arrives up to 95.0% even under a high current density of 20 A g−1, illuminating its excellent rate capability. The fabricated nitrogen-doped hierarchical porous carbon with larger capacitance than commercial activated carbon, excellent rate capability and cycle stability is an ideal cost-efficient substitution of commercial activated carbon for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16:16. https://doi.org/10.1038/NMAT4834

    Article  Google Scholar 

  2. Ma Q, Yu Y, Sindoro M, Fane AG, Wang R, Zhang H (2017) Carbon-based functional materials derived from waste for water remediation and energy storage. Adv Mater 29:1605361. https://doi.org/10.1002/adma.201605361

    Article  CAS  Google Scholar 

  3. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816. https://doi.org/10.1039/c7cs00205j

    Article  CAS  Google Scholar 

  4. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J Mater Chem A. 6:1244. https://doi.org/10.1039/c7ta07579k

    Article  CAS  Google Scholar 

  5. Yu M, Lin D, Feng H, Zeng Y, Tong Y, Lu X (2017) Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew Chem Int Ed 56:5454. https://doi.org/10.1002/anie.201701737

    Article  CAS  Google Scholar 

  6. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189. https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  7. Jin Y, Zhao C, Wang Y, Jiang Q, Ji C, Jia M (2017) Large-scale production of Cu3P nanocrystals for ultrahigh-rate supercapacitor. Ionics 23:3249. https://doi.org/10.1007/s11581-017-2267-7

    Article  CAS  Google Scholar 

  8. Wei X, Gou H, Mo Z, Guo R, Hu R, Wang Y (2016) Hierarchically structured nitrogen-doped carbon for advanced supercapacitor electrode materials. Ionics 22:1197. https://doi.org/10.1007/s11581-016-1635-z

    Article  CAS  Google Scholar 

  9. Liu T, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A. 5:17705. https://doi.org/10.1039/C7TA05646J

    Article  CAS  Google Scholar 

  10. Chen C, Fan W, Zhang Q, Fu X, Wu H (2015) One-step hydrothermal synthesis of nitrogen and sulfur co-doped graphene for supercapacitors with high electrochemical capacitance performance. Ionics 21:3233. https://doi.org/10.1007/s11581-015-1522-z

    Article  CAS  Google Scholar 

  11. Zhang D, Han M, Li Y, He J, Wang B, Wang K, Feng H (2017) Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy. J Power Sources 372:260. https://doi.org/10.1016/j.jpowsour.2017.10.082

    Article  CAS  Google Scholar 

  12. Zhou S, Xie Q, Wu S, Huang X, Zhao P (2017) Influence of graphene coating on supercapacitive behavior of sandwich-like N- and O-enriched porous carbon/graphene composites in aqueous and organic electrolytes. Ionics 23:1499. https://doi.org/10.1007/s11581-017-1982-4

    Article  CAS  Google Scholar 

  13. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A. 5:2411. https://doi.org/10.1039/C6TA08742F

    Article  CAS  Google Scholar 

  14. Sun K, Li J, Peng H, Feng E, Ma G, Lei Z (2016) Promising nitrogen-doped porous nanosheets carbon derived from pomegranate husk as advanced electrode materials for supercapacitors. Ionics 23:985. https://doi.org/10.1007/s11581-016-1897-5

    Article  CAS  Google Scholar 

  15. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132. https://doi.org/10.1039/c7gc01681f

    Article  CAS  Google Scholar 

  16. Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy. 36:322. https://doi.org/10.1016/j.nanoen.2017.04.042

    Article  CAS  Google Scholar 

  17. Liu Y, Huang B, Lin X, Xie Z (2017) Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J Mater Chem A. 5:13009. https://doi.org/10.1039/C7TA03639F

    Article  CAS  Google Scholar 

  18. Chao S, Lintong H, Kai G, Huiqiao L, Tianyou Z (2017) Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high-performance supercapacitors in universal electrolyte. Adv Sustain Syst. 1:1600011. https://doi.org/10.1002/adsu.201600011

    Article  CAS  Google Scholar 

  19. Ou J, Yang L, Zhang Z, Xi X (2016) Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate lithium ion battery anodes. J Power Sources 333:193. https://doi.org/10.1016/j.jpowsour.2016.09.163

    Article  CAS  Google Scholar 

  20. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315. https://doi.org/10.1016/j.carbon.2015.05.056

    Article  CAS  Google Scholar 

  21. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375. https://doi.org/10.1016/j.jpowsour.2017.07.097

    Article  CAS  Google Scholar 

  22. Zhang W, Xu J, Hou D, Yin J, Liu D, He Y, Lin H (2018) Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications. J Colloid Interface Sci 530:338. https://doi.org/10.1016/j.jcis.2018.06.076

    Article  CAS  Google Scholar 

  23. Gao S, Li X, Li L, Wei X (2017) A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy. 33:334. https://doi.org/10.1016/j.nanoen.2017.01.045

    Article  CAS  Google Scholar 

  24. Kleszyk P, Ratajczak P, Skowron P, Jagiello J, Abbas Q, Frąckowiak E, Béguin F (2015) Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors. Carbon 81:148. https://doi.org/10.1016/j.carbon.2014.09.043

    Article  CAS  Google Scholar 

  25. Bommier C, Xu R, Wang W, Wang X, Wen D, Lu J, Ji X (2015) Self-activation of cellulose: a new preparation methodology for activated carbon electrodes in electrochemical capacitors. Nano Energy. 13:709. https://doi.org/10.1016/j.nanoen.2015.03.022

    Article  CAS  Google Scholar 

  26. Xia C, Shi SQ (2016) Self-activation for activated carbon from biomass: theory and parameters. Green Chem 18:2063. https://doi.org/10.1039/c5gc02152a

    Article  CAS  Google Scholar 

  27. Tounsadi H, Khalidi A, Farnane M, Abdennouri M, Barka N (2016) Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability. Process Saf Environ Prot 102:710. https://doi.org/10.1016/j.psep.2016.05.017

    Article  CAS  Google Scholar 

  28. Tounsadi H, Khalidi A, Machrouhi A, Farnane M, Elmoubarki R, Elhalil A, Sadiq M, Barka N (2016) Highly efficient activated carbon from Glebionis coronaria L. biomass: optimization of preparation conditions and heavy metals removal using experimental design approach. J Environ Chem Eng 4:4549. https://doi.org/10.1016/j.jece.2016.10.020

    Article  CAS  Google Scholar 

  29. Renna M, Cocozza C, Gonnella M, Abdelrahman H, Santamaria P (2015) Elemental characterization of wild edible plants from countryside and urban areas. Food Chem 177:29. https://doi.org/10.1016/j.foodchem.2014.12.069

    Article  CAS  Google Scholar 

  30. Dória LC, Podadera DS, Arco M, Chauvin T, Smets E, Delzon S, Lens F (2018) Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought-induced hydraulic failure than their herbaceous relatives. Funct Ecol 32:1467. https://doi.org/10.1111/1365-2435.13085

    Article  Google Scholar 

  31. Puglia G, Grimaldi S, Carta A, Pavone P, Toorop P (2015) Pericarp structure of Glebionis coronaria (L.) Cass ex Spach (Asteraceae) cypselae controls water uptake during germination. Seed Science Res 25:255. https://doi.org/10.1017/S0960258515000148

    Article  Google Scholar 

  32. Muñoz-Huerta R, Guevara-Gonzalez R, Contreras-Medina L, Torres-Pacheco I, Prado-Olivarez J, Ocampo-Velazquez R (2013) A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13:10823. https://doi.org/10.3390/s130810823

    Article  CAS  Google Scholar 

  33. Yu J, Maliutina K, Tahmasebi A (2018) A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.08.127

    Article  Google Scholar 

  34. Travlou NA, Bandosz TJ (2017) N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media. Carbon 117:228. https://doi.org/10.1016/j.carbon.2017.02.099

    Article  CAS  Google Scholar 

  35. Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104. https://doi.org/10.1016/j.carbon.2018.02.024

    Article  CAS  Google Scholar 

  36. Zhang D, Han M, Wang B, Li Y, Lei L, Wang K, Wang Y, Zhang L, Feng H (2017) Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: excellent rate capability and cycle stability. J Power Sources 358:112. https://doi.org/10.1016/j.jpowsour.2017.05.031

    Article  CAS  Google Scholar 

  37. Pan D, Zhang M, Wang Y, Yan Z, Jing J, Xie J (2017) In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors. Chem Phys Lett 685:457. https://doi.org/10.1016/j.cplett.2017.08.021

    Article  CAS  Google Scholar 

  38. Wang B, Wang Y, Peng Y, Wang X, Wang N, Wang J, Zhao J (2018) Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage. Chem Eng J 348:850. https://doi.org/10.1016/j.cej.2018.05.061

    Article  CAS  Google Scholar 

  39. Tian W, Gao Q, Tan Y, Yang K, Zhu L, Yang C, Zhang H (2015) Bio-inspired beehive-like hierarchical nanoporous carbon derived from bamboo-based industrial by-product as a high performance supercapacitor electrode material. J Mater Chem A. 3:5656. https://doi.org/10.1039/c0xx00000x

    Article  CAS  Google Scholar 

  40. Patel MA, Luo F, Savaram K, Kucheryavy P, Xie Q, Flach C, Mendelsohn R, Garfunkel E, Lockard JV, He H (2017) P and S dual-doped graphitic porous carbon for aerobic oxidation reactions: enhanced catalytic activity and catalytic sites. Carbon 114:383. https://doi.org/10.1016/j.carbon.2016.11.064

    Article  CAS  Google Scholar 

  41. Gunawan MA, Moncea O, Poinsot D, Keskes M, Domenichini B, Heintz O, Chassagnon R, Herbst F, Carlson RMK, Dahl JEP, Fokin AA, Schreiner PR, Hierso J-C (2018) Nanodiamond-palladium core–shell organohybrid synthesis: a mild vapor-phase procedure enabling nano layering metal onto functionalized sp3-carbon. Adv Funct Mater. https://doi.org/10.1002/adfm.201705786

    Article  Google Scholar 

  42. Yu H, Zhang W, Li T, Zhi L, Dang L, Liu Z, Lei Z (2017) Capacitive performance of porous carbon nanosheets derived from biomass cornstalk. RSC Adv. 7:1067. https://doi.org/10.1039/c6ra25899a

    Article  CAS  Google Scholar 

  43. Xuan C, Peng Z, Wang J, Lei W, Xia K, Wu Z, Xiao W, Wang D (2017) Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chin Chem Lett 28:2227. https://doi.org/10.1016/j.cclet.2017.09.009

    Article  CAS  Google Scholar 

  44. Leng C, Sun K, Li J, Jiang J (2017) From dead pine needles to O, N codoped activated carbons by a one-step carbonization for high rate performance supercapacitors. ACS Sustain Chem Eng. 5:10474. https://doi.org/10.1021/acssuschemeng.7b02481

    Article  CAS  Google Scholar 

  45. Zhang D, Zheng L, Ma Y, Lei L, Li Q, Li Y, Luo H, Feng H, Hao Y (2014) Synthesis of nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors. ACS Appl Mater Interfaces 6:2657. https://doi.org/10.1021/am405128j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51462020 and 21867015), and the Foundation for Innovation Groups of Basic Research in Gansu Province (Grant No. 1606RJIA322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., He, J., Tang, X. et al. Supercapacitors based on a nitrogen doped hierarchical porous carbon fabricated by self-activation of biomass: excellent rate capability and cycle stability. Carbon Lett. 29, 585–594 (2019). https://doi.org/10.1007/s42823-019-00057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00057-5

Keywords

Navigation