Skip to main content
Log in

Antibacterial activity of Chinese propolis and its synergy with β-lactams against methicillin-resistant Staphylococcus aureus

  • Bacterial and Fungal Pathogenesis - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Propolis has exhibited effective antibacterial activities in preventing the growth of multiple pathogenic bacteria. However, the antibacterial activity of Chinese propolis against methicillin-resistant Staphylococcus aureus (MRSA) is almost unknown. The present study aimed to explore the antibacterial activity and action mechanism of Chinese propolis ethanol extract (CPEE) against MRSA. Thirteen compounds of CPEE were identified using HPLC–DAD/Q-TOF–MS, and none of them showed better anti-MRSA activity than CPEE. The diameter of inhibition zone (DIZ) of CPEE was 20.1 mm. The minimal inhibitory concentration (MIC) of CPEE was 32 mg/L, while the minimal bactericidal concentration (MBC) against MRSA was 64 mg/L. Moreover, CPEE showed significant synergistic effects with β-lactam antibiotics (ampicillin and oxacillin). Nucleic acid and protein leakage assays showed that CPEE can stimulate the release of intracellular macromolecules by damaging the cell membrane integrity of MRSA. Live/dead-staining and SDS-PAGE assays further confirmed that CPEE could inhibit bacterial activities by disrupting the membrane. The reduction in PBP2a expression and β-lactamase activity, as shown by western blot and β-lactamase detection assays, suggested that CPEE was able to reverse the drug resistance of MRSA. These results demonstrated the anti-MRSA activity of CPEE was mainly due to changing the cell membrane and reversing resistance, which indicates that CPEE could be an attractive candidate for use in future food and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CPEE:

Chinese propolis ethanol extract

DIZ:

Diameter of inhibition zone

FIC:

Fractional inhibitory concentration

MBC:

Minimal bactericidal concentration

MIC:

Minimal inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

PBS:

Phosphate-buffered saline

TSA:

Trypticase soy agar

TSB:

Trypticase soy broth

References

  1. Flora M, Perrotta F, Nicolai A, Maffucci R, Pratillo A, Mollica M, Bianco A, Calabrese C (2019) Staphylococcus aureus in chronic airway diseases: an overview. Respir Med 155:66–71

    Article  PubMed  Google Scholar 

  2. Mera RM, Suaya JA, Amrine-Madsen H, Hogea CS, Miller LA, Lu EP, Sahm DF, O’Hara P, Acosta CJ (2011) Increasing role of Staphylococcus aureus and community-acquired methicillin-resistant Staphylococcus aureus infections in the United States: a 10-year trend of replacement and expansion. Microb Drug Resist 17:321–328

    Article  PubMed  Google Scholar 

  3. Huang C, Wang XL, Zhang L, Shen W (2008) Distribution and drug resistance of pathogenic bacteria in children with lower respiratory tract infection from Chengdu Children’s Hospital between 2001 and 2006. Chin J Contemp Pediatr 10:17–20

    CAS  Google Scholar 

  4. Baek KT, Grundling A, Mogensen RG, Thogersen L, Petersen A, Paulander W, Frees D (2014) beta-lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Ch 58, 4593–4603. c solvents applied in extraction and separation. J Sep Sci 39:3505–3520

    Google Scholar 

  5. Qin N, Tan X, Jiao Y, Liu L, Zhao W, Yang S, Jia A (2014) RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci Rep 4:5467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yuan WW, Chang HS, Liu XY, Wang SQ, Liu H, Xuan HZ (2019) Brazilian green propolis inhibits Ox-LDL-stimulated oxidative stress in human umbilical vein endothelial cells partly through PI3K/Akt/mTOR-mediated Nrf2/HO-1 pathway. Evid-Based Compl Alt 2019:5789574

    Article  Google Scholar 

  7. Bankova V (2005) Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 100:114–117

    Article  PubMed  CAS  Google Scholar 

  8. Huang S, Zhang CP, Wang K, Li GQ, Hu FL (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE (2005) Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol Res 51:147–152

    Article  PubMed  CAS  Google Scholar 

  10. Braakhuis A (2019) Evidence on the health benefits of supple mental propolis. Nutrients 11(11):2705

    Article  PubMed Central  CAS  Google Scholar 

  11. Chen YW, Ye SR, Ting C, Yu YH (2018) Antibacterial activity of propolins from Taiwanese green propolis. J Food Drug Anal 26:761–768

    Article  PubMed  CAS  Google Scholar 

  12. Gezgin Y, Kazan A, Ulucana F, Yesil-Celiktas O (2019) Antimicrobial activity of propolis and gentamycin against methicillin-resistant Staphylococcus aureus in a 3D thermo-sensitive hydrogel. Ind Crop Prod 139:111588

    Article  CAS  Google Scholar 

  13. Xuan H, Yuan W, Chang H, Liu M, Hu F (2019) Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway. Inflammopharmacology 27:561–571

    Article  PubMed  CAS  Google Scholar 

  14. Wang F, Liu H, Li J, Zhang W, Jiang B, Xuan H (2021) Australian propolis ethanol extract exerts antibacterial activity against methicillin-resistant Staphylococcus aureus by mechanisms of disrupting cell structure, reversing resistance, and resisting biofilm. Braz J Microbiol 52:1651–1664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Said ZBS, Guemghar HH, Makhlouf LB, Rigou P, Remini H, Adjaoud A, Khoudja NK, Madani K (2016) Essential oils composition, antibacterial and antioxidant activities of hydrodistillated extract of Eucalyptus globulus fruits. Ind Crop Prod 89:167–175

    Article  Google Scholar 

  16. Chen ZF, He B, Zhou J, He DH, Deng JD, Zeng RH (2016) Chemical compositions and antibacterial activities of essential oils extracted from Alpinia guilinensis against selected foodborne pathogens. Ind Crop Prod 83:607–613

    Article  CAS  Google Scholar 

  17. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children (vol 52, pg e18, 2011). Clin Infect Dis 53:319–319

    Google Scholar 

  18. Catteau L, Reichmann NT, Olson J, Pinho MG, Nizet V, Van Bambeke F, Quetin-Leclercq J (2017) Synergy between ursolic and oleanolic acids from Vitellaria paradoxa leaf extract and β-lactams against methicillin-resistant Staphylococcus aureus: in vitro and in vivo activity and underlying mechanisms. Molecules 22:2245

    Article  PubMed Central  Google Scholar 

  19. Chung PY, Navaratnam P, Chung LY (2011) Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann Clin Microb Anti 10:25

    Article  CAS  Google Scholar 

  20. Lee YS, Kang OH, Choi JG, Oh YC, Chae HS, Kim JH, Park H, Sohn DH, Wang ZT, Kwon DY (2008) Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol 46:283–288

    Article  PubMed  CAS  Google Scholar 

  21. Wang F, Wei FY, Song CX, Jiang B, Tian SY, Yi JW, Yu CL, Song ZB, Sun LG, Bao YL, Wu Y, Huang YX, Li YX (2017) Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Ind Crop Prod 109:358–366

    Article  CAS  Google Scholar 

  22. Yang Y, Tian S, Wang F, Li Z, Liu L, Yang X, Bao Y, Wu Y, Huang Y, Sun L, Yu C, Li Y (2018) Chemical composition and antibacterial activity of Kaempferia galanga essential oil. Int J Agric Biol 20:457–462

    Article  CAS  Google Scholar 

  23. Liu YC, Xu YJ, Song QH, Wang F, Sun LG, Liu L, Yang XG, Yi JW, Bao YL, Ma HF, Huang HL, Yu CL, Huang YX, Wu Y, Li YX (2017) Anti-biofilm activities from Bergenia crassifolia leaves against Streptococcus mutans. Front Microbiol 8:1738

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jiang B, Wang F, Liu L, Tian SY, Li WL, Yang XG, Wu Y, Huang YX, Yi JW, Yu CL, Sun LG, Zhang YW, Li YX (2017) Antibacterial activity and action mechanism of the echinops ritro l. Essential oil against foodborne pathogenic bacteria. J Essent Oil Bear Pl 20:1172–1183

    Article  CAS  Google Scholar 

  25. Zhang WW, Margarita GE, Wu D, Yuan WQ, Yan S, Qi SZ, Xue XF, Wang K, Wu LM (2022) Antibacterial activity of Chinese red propolis against Staphylococcus aureus and MRSA. Molecules 27:1693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hsouna AB, Trigui M, Mansour RB, Jarraya RM, Damak M, Jaoua S (2011) Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int J Food Microbiol 148:66–72

    Article  PubMed  Google Scholar 

  27. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zhang YB, Liu XY, Wang YF, Jiang PP, Quek S (2016) Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 59:282–289

    Article  CAS  Google Scholar 

  29. Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  PubMed  CAS  Google Scholar 

  30. Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Diao WR, Hu QP, Zhang H, Xu JG (2014) Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 35:109–116

    Article  CAS  Google Scholar 

  32. Sharma A, Bajpai VK, Baek KH (2013) Determination of antibacterial mode of action of Allium sativum essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters. J Food Safety 33:197–208

    Article  Google Scholar 

  33. Tazi A, Chapron J, Touak G, Longo M, Hubert D, Collobert G, Dusser D, Poyart C, Morand PC (2013) Rapid emergence of resistance to linezolid and mutator phenotypes in Staphylococcus aureus isolates from an adult cystic fibrosis patient. Antimicrob Agents Chemother 57:5186–5188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nannini E, Murray BE, Arias CA (2010) Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 10:516–521

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from Shandong Province Modern Agricultural Technology System (SDAIT-24–05), Shandong Provincial Natural Science Foundation of China (ZR2021MC110) and the Doctoral Research Foundation of Liaocheng University (No. 318051826).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuyao Wei or Hongzhuan Xuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Agnes M.S. Figueiredo

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yuan, J., Li, J. et al. Antibacterial activity of Chinese propolis and its synergy with β-lactams against methicillin-resistant Staphylococcus aureus. Braz J Microbiol 53, 1789–1797 (2022). https://doi.org/10.1007/s42770-022-00807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00807-0

Keywords

Navigation