Skip to main content

Advertisement

Log in

Development of multiplex TaqMan qPCR for simultaneous detection and differentiation of eight common swine viral and bacterial pathogens

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract  

It is laborious to diagnose the infections of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), and Suid herpesvirus 1 (SuHV-1) because of the similar clinical symptoms in piglets. Staphylococcus aureus (S. aureus), Streptococcus suis (S. suis), Salmonella choleraesuis (S. choleraesuis, serotype: 6,7:c:1,5), and Escherichia coli (E. coli) are common secondary bacterial pathogens in viral infections. Furthermore, the mixed infection of these viral and bacterial pathogens is more and more common in practical swine breeding. Therefore, a TaqMan multiplex qPCR method for simultaneous detection and differentiation of their pathogen was established in this study by designing specific primers and probes for the E2 gene of CSFV, the ORF7 gene of PRRSV, the ORF1 gene of PCV2 and the gE gene of SuHV-1, the nuc gene of S. aureus, the ef-tu gene of S. suis, the ivnA gene of S. choleraesuis, and the 23S rRNA gene of E. coli, and its specificity, sensitivity, and reproducibility were subsequently tested. The results showed that TaqMan multiplex qPCR method showed a high specificity with no cross reaction between different viruses, and a good repeatability with its coefficient of variation lower than 5%. Besides, the sensitivity of this method was also at least 10 times higher compared with conventional PCR. Overall, this study provided a reliable multiplex TaqMan qPCR method for the diagnosis and differentiation of the mentioned pathogens in pigs, laying a certain technical basis for disease prevention and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erickson A, Fisher M, Furukawa-Stoffer T, Ambagala A, Hodko D, Pasick J, King DP, Nfon C, Ortega Polo R, Lung O (2018) A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine. Transbound Emerg Dis 65(2):e272–e283. https://doi.org/10.1111/tbed.12749

    Article  CAS  PubMed  Google Scholar 

  2. Diaz de Arce H, Perez LJ, Frias MT, Rosell R, Tarradas J, Nunez JI, Ganges L (2009) A multiplex RT-PCR assay for the rapid and differential diagnosis of classical swine fever and other pestivirus infections. Vet Microbiol 139(3–4):245–252. https://doi.org/10.1016/j.vetmic.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  3. Cao S, Chen H, Zhao J, Lu J, Xiao S, Jin M, Guo A, Wu B, He Q (2005) Detection of porcine circovirus type 2, porcine parvovirus and porcine pseudorabies virus from pigs with postweaning multisystemic wasting syndrome by multiplex PCR. Vet Res Commun 29(3):263–269. https://doi.org/10.1023/b:verc.0000047501.78615.0b

    Article  CAS  PubMed  Google Scholar 

  4. Yue F, Cui S, Zhang C, Yoon KJ (2009) A multiplex PCR for rapid and simultaneous detection of porcine circovirus type 2, porcine parvovirus, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Virus Genes 38(3):392–397. https://doi.org/10.1007/s11262-009-0333-6

    Article  CAS  PubMed  Google Scholar 

  5. Song J, Shen D, Cui J, Zhao B (2010) Accelerated evolution of PRRSV during recent outbreaks in China. Virus Genes 41(2):241–245. https://doi.org/10.1007/s11262-010-0507-2

    Article  CAS  PubMed  Google Scholar 

  6. Chen HY, Wei ZY, Zhang HY, Lu XL, Zheng LL, Cui BA, Liu J, Zhu QL, Wang ZX (2010) Use of a multiplex RT-PCR assay for simultaneous detection of the north american genotype porcine reproductive and respiratory syndrome virus, swine influenza virus and Japanese Encephalitis virus. Agric Sci China 9(7):1050–1057. https://doi.org/10.1016/S1671-2927(09)60189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler JE, Lager KM, Golde W, Faaberg KS, Sinkora M, Loving C, Zhang YI (2014) Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunol Res 59(1–3):81–108. https://doi.org/10.1007/s12026-014-8549-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kleiboeker SB (2002) Swine fever: classical swine fever and African swine fever. Vet Clin North Am Food Anim Pract 18(3):431–451. https://doi.org/10.1016/s0749-0720(02)00028-2

    Article  PubMed  Google Scholar 

  9. Giammarioli M, Pellegrini C, Casciari C, De Mia GM (2008) Development of a novel hot-start multiplex PCR for simultaneous detection of classical swine fever virus, African swine fever virus, porcine circovirus type 2, porcine reproductive and respiratory syndrome virus and porcine parvovirus. Vet Res Commun 32(3):255–262. https://doi.org/10.1007/s11259-007-9026-6

    Article  PubMed  Google Scholar 

  10. Haines FJ, Hofmann MA, King DP, Drew TW, Crooke HR (2013) Development and validation of a multiplex, real-time RT PCR assay for the simultaneous detection of classical and African swine fever viruses. PLoS ONE 8(7):e71019. https://doi.org/10.1371/journal.pone.0071019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu XG, Chen GD, Huang Y, Ding L, Li ZC, Chang CD, Wang CY, Tong DW, Liu HJ (2012) Development of multiplex PCR for simultaneous detection of six swine DNA and RNA viruses. J Virol Methods 183(1):69–74. https://doi.org/10.1016/j.jviromet.2012.03.034

    Article  CAS  PubMed  Google Scholar 

  12. Wernike K, Hoffmann B, Beer M (2013) Single-tube multiplexed molecular detection of endemic porcine viruses in combination with background screening for transboundary diseases. J Clin Microbiol 51(3):938–944. https://doi.org/10.1128/JCM.02947-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang YL, Pang VF, Pan CH, Chen TH, Jong MH, Huang TS, Jeng CR (2009) Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus. J Virol Methods 160(1–2):111–118. https://doi.org/10.1016/j.jviromet.2009.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee CS, Moon HJ, Yang JS, Park SJ, Song DS, Kang BK, Park BK (2007) Multiplex PCR for the simultaneous detection of pseudorabies virus, porcine cytomegalovirus, and porcine circovirus in pigs. J Virol Methods 139(1):39–43. https://doi.org/10.1016/j.jviromet.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zhao JJ, Li N, Shi Z, Cheng D, Zhu QH, Tu C, Tong GZ, Qiu HJ (2007) A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods 143(1):16–22. https://doi.org/10.1016/j.jviromet.2007.01.032

    Article  CAS  PubMed  Google Scholar 

  16. Jacob ME, Shi X, An B, Nagaraja TG, Bai J (2012) Evaluation of a multiplex real-time polymerase chain reaction for the quantification of Escherichia coli O157 in cattle feces. Foodborne Pathog Dis 9(1):79–85. https://doi.org/10.1089/fpd.2011.0947

    Article  CAS  PubMed  Google Scholar 

  17. Noll LW, Shridhar PB, Shi X, An B, Cernicchiaro N, Renter DG, Nagaraja TG, Bai J (2015) A Four-Plex Real-Time PCR Assay, Based on rfbE, stx1, stx2, and eae genes, for the detection and quantification of shiga toxin-producing Escherichia coli O157 in Cattle Feces. Foodborne Pathog Dis 12(9):787–794. https://doi.org/10.1089/fpd.2015.1951

    Article  CAS  PubMed  Google Scholar 

  18. Xu XG, Liu HJ (2008) Baculovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse model. Vaccine 26(43):5455–5460. https://doi.org/10.1016/j.vaccine.2008.07.090

    Article  CAS  PubMed  Google Scholar 

  19. Xu X, Zhang H, Zhang Q, Dong J, Liang Y, Huang Y, Liu HJ, Tong D (2013) Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol J 10:26. https://doi.org/10.1186/1743-422X-10-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Q, Xu Y, Chang R, Tong D, Xu X (2018) Transmissible gastroenteritis virus N protein causes endoplasmic reticulum stress, up-regulates interleukin-8 expression and its subcellular localization in the porcine intestinal epithelial cell. Res Vet Sci 119:109–115. https://doi.org/10.1016/j.rvsc.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gussow D, Clackson T (1989) Direct clone characterization from plaques and colonies by the polymerase chain reaction. Nucleic Acids Res 17(10):4000. https://doi.org/10.1093/nar/17.10.4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi X, Liu X, Wang Q, Das A, Ma G, Xu L, Sun Q, Peddireddi L, Jia W, Liu Y, Anderson G, Bai J, Shi J (2016) A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses. J Virol Methods 236:258–265. https://doi.org/10.1016/j.jviromet.2016.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu JK, Wei CH, Yang XY, Dai AL, Li XH (2013) Multiplex PCR for the simultaneous detection of porcine reproductive and respiratory syndrome virus, classical swine fever virus, and porcine circovirus in pigs. Mol Cell Probes 27(3–4):149–152. https://doi.org/10.1016/j.mcp.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  24. Liu S, Zhao Y, Hu Q, Lv C, Zhang C, Zhao R, Hu F, Lin W, Cui S (2011) A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. J Virol Methods 172(1–2):88–92. https://doi.org/10.1016/j.jviromet.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa H, Taira O, Hirai T, Takeuchi H, Nagao A, Ishikawa Y, Tuchiya K, Nunoya T, Ueda S (2009) Multiplex PCR and multiplex RT-PCR for inclusive detection of major swine DNA and RNA viruses in pigs with multiple infections. J Virol Methods 160(1–2):210–214. https://doi.org/10.1016/j.jviromet.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Rao P, Jiang Y, Opriessnig T, Yang Z (2014) A sensitive multiplex real-time PCR panel for rapid diagnosis of viruses associated with porcine respiratory and reproductive disorders. Mol Cell Probes 28(5–6):264–270. https://doi.org/10.1016/j.mcp.2014.07.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the science and technology projects of Yangling demonstration area (No. 2018NY-10) and the innovation project for agro-technology of Shaanxi Province (No. 2019NY-081), China.

Author information

Authors and Affiliations

Authors

Contributions

Qi Zhang, Feng Yang, and Jie Gao performed the majority of experiments and involved in manuscript preparation. Xingang Xu and Weimin Zhang conceived of the study, participate in its design and coordination, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weimin Zhang or Xingang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qi Zhang, Feng Yang and Jie Gao are contributed equally to this work.

Responsible Editor: Fernando R. Spilki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yang, F., Gao, J. et al. Development of multiplex TaqMan qPCR for simultaneous detection and differentiation of eight common swine viral and bacterial pathogens. Braz J Microbiol 53, 359–368 (2022). https://doi.org/10.1007/s42770-021-00633-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00633-w

Keywords

Navigation