Skip to main content
Log in

Comparative transcriptomic analysis provides insights into transcription mechanisms of Vibrio parahaemolyticus T3SS during interaction with HeLa cells

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is an important foodborne pathogenic bacterium that harbors the type III secretion system 1 (T3SS1) as an essential virulence factor. However, the pathogenesis and infection mechanism mediated by T3SS1 are not entirely clarified. Similar to previous studies on other T3SS-positive bacteria, the T3SS1 needle is a major extracellular component in V. parahaemolyticus. We recently showed that the needle gene-deletion mutant (ΔvscF) exhibited markedly decreased cytotoxicity and effector translocation during interaction with HeLa cells. To further elucidate the pathogenesis of T3SS1 during host cell infection, bacterial RNA was extracted from wild-type POR-1 and ΔvscF mutants under infected condition for comparative RNA sequencing analysis in HeLa cell. The results showed that 120 differentially expressed genes (DEGs) were identified in the ΔvscF-infected group. These encoded proteins of DEGs, such as VP2088, VP2089, and VP2091, were annotated as ABC transporter system, whereas VP0757, VP1123, and VP1289 may be new transcriptional regulators. In addition, the downregulation of T3SS1 had a positive influence on the expression of T3SS2. Moreover, the transcription of the basal body is unaffected by the needle, and there was a close relation among the tip, translocon, and needle, because bacterial adenylate cyclase two-hybrid system (BACTH system) assay indicated the interaction of VP1656, VP1670, VP1693, and VP1694 (VscF). This study provides insights into transcription mechanism of T3SS1 upon infecting HeLa cell, which is expected to better clarify the T3SS1 virulent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nair GB et al (2007) Global dissemination of Vibrio parahaemolyticus serotype O3 : K6 and its serovariants. Clin Microbiol Rev 20(1):39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Makino K et al (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361(9359):743–749

    Article  CAS  PubMed  Google Scholar 

  3. Su YC, Liu CC (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24(6):549–558

    Article  PubMed  Google Scholar 

  4. Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13(12–13):992–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Authority, E.F.S., E.F.S. Authority, and E.C.D.P. Co (2017) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. Efsa Journal 15(12):e05500

    Google Scholar 

  6. Daniels NA et al (2000) Vibrio parahaemolyticus infections in the United States, 1973–1998. J Infect Dis 181(5):1661–1666

    Article  CAS  PubMed  Google Scholar 

  7. Jung SW (2018) A foodborne outbreak of gastroenteritis caused by Vibrio parahaemolyticus associated with cross-contamination from squid in Korea. Epidemiol and Health 40:e2018056

    Article  Google Scholar 

  8. Khimmakthong U, Sukkarun P (2017) The spread of Vibrio parahaemolyticus in tissues of the Pacific white shrimp Litopenaeus vannamei analyzed by PCR and histopathology. Microb Pathog 113:107–112

    Article  PubMed  Google Scholar 

  9. Santos MD, Orth K (2015) Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria. Salmonella and Vibrio Cellular Microbiology 17(2):164–173

    Article  CAS  Google Scholar 

  10. Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4(11):811–825

    Article  CAS  PubMed  Google Scholar 

  11. Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444(7119):567–573

    Article  CAS  PubMed  Google Scholar 

  12. Park KS et al (2004) Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72(11):6659–6665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erhardt M, Namba K, Hughes KT (2010) Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2(11):a000299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimohata T et al (2012) VopB1 and VopD1 are essential for translocation of type III secretion system 1 effectors of Vibrio parahaemolyticus. Can J Microbiol 58(8):1002–1007

    Article  CAS  PubMed  Google Scholar 

  15. Yarbrough ML et al (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323(5911):269–272

    Article  CAS  PubMed  Google Scholar 

  16. Broberg CA (2011) A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity (September, pg 1660, 2010). Science 331(6013):30–30

    CAS  Google Scholar 

  17. Kimbrough TG, Miller SI (2000) Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci USA 97(20):11008–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubori T et al (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA 97(18):10225–10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamano K et al (2000) Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J 19(15):3876–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blocker A et al (2001) Structure and composition of the Shigella flexneri “needle complex”, a part of its type III secreton. Mol Microbiol 39(3):652–663

    Article  CAS  PubMed  Google Scholar 

  21. Blocker AJ et al (2008) What’s the point of the type III secretion system needle? Proc Natl Acad Sci 105(18):6507–6513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Torruellas J et al (2005) The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 57(6):1719–1733

    Article  CAS  PubMed  Google Scholar 

  23. Kato J et al (2018) A protein secreted by the Salmonella type III secretion system controls needle filament assembly. Elife 7:e35886

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cordes FS et al (2003) Helical structure of the needle of the type III secretion system of Shigella flexneri (vol 278, pg 17103, 2003). J Biol Chem 278(38):36980–36980

    Article  CAS  Google Scholar 

  25. Hoiczyk E, Blobel G (2001) Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci USA 98(8):4669–4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinez-Argudo I, Blocker AJ (2010) The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol 78(6):1365–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lian L et al (2021) VscF in T3SS1 helps to translocate VPA0226 in Vibrio parahaemolyticus. Front Cell Infect Microbiol 11(254):652432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohgita T, Saito H (2019) Biophysical mechanism of protein export by bacterial type III secretion system. Chem Pharm Bull 67(4):341–344

    Article  CAS  Google Scholar 

  29. Enninga J, Rosenshine I (2009) Imaging the assembly, structure and activity of type III secretion systems. Cell Microbiol 11(10):1462–1470

    Article  CAS  PubMed  Google Scholar 

  30. Zeb S et al (2019) Type III secretion system confers enhanced virulence in clinical non-O1/non-O139 Vibrio cholerae. Microb Pathog 135:103645

    Article  CAS  PubMed  Google Scholar 

  31. Dey S et al (2019) The type III secretion system needle, tip, and translocon. Protein Sci 28(9):1582–1593

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastor A et al (2005) PscF is a major component of the Pseudomonas aeruginosa type III secretion needle. FEMS Microbiol Lett 253(1):95–101

    Article  CAS  PubMed  Google Scholar 

  33. Ple S et al (2010) Cochaperone interactions in export of the type III needle component PscF of Pseudomonas aeruginosa. J Bacteriol 192(14):3801–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plano GV, Schesser K (2013) The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 57(1–3):237–245

    Article  CAS  PubMed  Google Scholar 

  35. Deng WY et al (2017) Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15(6):323–337

    Article  CAS  PubMed  Google Scholar 

  36. Park KS et al (2004) Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiol Immunol 48(4):313–318

    Article  CAS  PubMed  Google Scholar 

  37. Karimova G et al (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95(10):5752–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58(4):325–334

    Article  CAS  PubMed  Google Scholar 

  39. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chong L (2001) Molecular cloning - a laboratory manual, 3rd edition. Science 292(5516):446–446

    Article  CAS  Google Scholar 

  41. Karimova G, Ullmann A, Ladant D (2000) Bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Applications of Chimeric Genes and Hybrid Proteins, Pt C 328:59–73

    Article  CAS  Google Scholar 

  42. Karimova G, Dautin N, Ladant D (2005) Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187(7):2233–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kusmierek M et al (2019) A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact. Plos Pathogens 15(6):e1007813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu CH et al (2017) Genomic and transcriptomic analyses reveal distinct biological functions for cold shock proteins (VpaCspA and VpaCspD) in Vibrio parahaemolyticus CHN25 during low-temperature survival. Bmc Genomics 18(1):436

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cornforth DM et al (2018) Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci USA 115(22):E5125–E5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Q, Chen MM, Zhang W (2018) A two-component signal transduction system contributes to the virulence of Riemerella anatipestifer. J Vet Sci 19(2):260–270

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nydam SD, Shah DH, Call DR (2014) Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions. Front Cell Infect Microbiol 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  48. Srisanga K et al (2019) Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion. J Proteomics 194:14–24

    Article  CAS  PubMed  Google Scholar 

  49. Bohn E et al (2019) Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. Int J Med Microbiol 309(5):344–350

    Article  CAS  PubMed  Google Scholar 

  50. Abisado RG et al (2018) Bacterial quorum sensing and microbial community interactions. Mbio 9(5):e02331-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551(7680):313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matilla MA, Krell T (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 42(1):40–67

    Article  CAS  Google Scholar 

  53. de Carvalho CCCR, Caramujo MJ (2018) The various roles of fatty acids. Molecules 23(10):2583

    Article  PubMed Central  Google Scholar 

  54. Lewis VG, Ween MP, McDevitt CA (2012) The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma 249(4):919–942

    Article  CAS  PubMed  Google Scholar 

  55. Wang CY et al (2018) ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production. Proc Natl Acad Sci USA 115(25):E5776–E5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Osborne SE et al (2012) Characterization of DalS, an ATP-binding cassette transporter for D-alanine, and its role in pathogenesis in Salmonella enterica. J Biol Chem 287(19):15242–15250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park KS et al (2000) Genetic characterization of DNA region containing the trh and ure genes of Vibrio parahaemolyticus. Infect Immun 68(10):5742–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hiles ID et al (1987) Molecular characterization of the oligopeptide permease of salmonella-Typhimurium. J Mol Biol 195(1):125–142

    Article  CAS  PubMed  Google Scholar 

  59. Masukagami Y et al (2018) Metabolite profiling of Mycoplasma gallisepticum mutants, combined with bioinformatic analysis, can reveal the likely functions of virulence-associated genes. Vet Microbiol 223:160–167

    Article  CAS  PubMed  Google Scholar 

  60. Nguyen PT et al (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP binding cassette (ABC) transporter. Proc Natl Acad Sci USA 115(45):E10596–E10604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu M, Wang J, Mou HJ (2015) Fatty acid profiles of Vibrio parahaemolyticus and its changes with environment. J Basic Microbiol 55(1):112–120

    Article  CAS  PubMed  Google Scholar 

  62. Masoudi A et al (2014) Chasing acyl carrier protein through a catalytic cycle of lipid A production. Nature 505(7483):422–6

    Article  CAS  PubMed  Google Scholar 

  63. Zhang YQ et al (2019) QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence. Environ Microbiol 21(3):1054–1067

    Article  CAS  PubMed  Google Scholar 

  64. Teh PP et al (2016) The transcriptional regulator, IRF4 is essential for the development of follicular T regulatory cells. Eur J Immunol 46:745–745

    Google Scholar 

  65. Toren E et al (2020) The Ldb1 transcriptional co-regulator is required for establishment, development, and survival of the pancreatic endocrine lineage. Faseb Journal 34(s1):1

    Article  Google Scholar 

  66. Sun FJ et al (2014) H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus. Front Microbiol 5:675

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gao H et al (2017) Transcriptional regulation of cpsQ-mfpABC and mfpABC by CalR in Vibrio parahaemolyticus. Microbiologyopen 6(4):e00470

    Article  PubMed Central  Google Scholar 

  68. Kodama T et al (2015) Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol 17(2):183–190

    Article  CAS  PubMed  Google Scholar 

  69. Zhang YQ et al (2016) Transcription of exsD is repressed directly by H-NS in Vibrio parahaemolyticus. Microb Pathog 97:221–225

    Article  CAS  PubMed  Google Scholar 

  70. Kodama T et al (2010) Two regulators of vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. Plos One 5(1):e8678

    Article  PubMed  PubMed Central  Google Scholar 

  71. Osei-Adjei G et al (2017) Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget 8(39):65809–65822

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang YQ et al (2018) Autoregulation of ToxR and its regulatory actions on major virulence gene loci in Vibrio parahaemolyticus. Front Cell Infect Microbiol 8:291

    Article  PubMed  PubMed Central  Google Scholar 

  73. Whitaker WB et al (2012) The Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect Immun 80(5):1834–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ibarra JA, Steele-Mortimer O (2009) Salmonella- the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cellular Microbiology 11(11):1579–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. LaRock DL, Chaudhary A, Miller SI (2015) Salmonellae interactions with host processes. Nat Rev Microbiol 13(4):191–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Figueira R, Holden DW (2012) Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology-Sgm 158:1147–1161

    Article  CAS  Google Scholar 

  77. Gode-Potratz CJ, Chodur DM, McCarter LL (2010) Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol 192(22):6025–6038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gotoh K et al (2010) Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. Plos One 5(10):e13365

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li P et al (2016) Bile salt receptor complex activates a pathogenic type III secretion system. Elife 5:e15718

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yin LX et al (2020) Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy. Plos Biology 18(3):e3000618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tao L et al (2017) Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nature Communications 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  82. Montagner C, Arquint C, Cornelis GR (2011) Translocators YopB and YopD from Yersinia enterocolitica form a multimeric integral membrane complex in eukaryotic cell membranes. J Bacteriol 193(24):6923–6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mattei PJ et al (2011) Membrane targeting and pore formation by the type III secretion system translocon. FEBS J 278(3):414–426

    Article  CAS  PubMed  Google Scholar 

  84. Wagner S et al (2010) Length control of the injectisome needle requires only one molecule of Yop secretion protein P (YscP). Proc Natl Acad Sci USA 107(31):13860–13865

    Article  PubMed  PubMed Central  Google Scholar 

  85. Agrain C et al (2005) Secretion of YscP from Yersinia enterocolitica is essential to control the length of the injectisome needle but not to change the type III secretion substrate specificity. Mol Microbiol 57(5):1415–1427

    Article  CAS  PubMed  Google Scholar 

  86. Souza CD et al (2018) The YscE/YscG chaperone and YscF N-terminal sequences target YscF to the Yersinia pestis type III secretion apparatus. Microbiology-Sgm 164(3):338–348

    Article  CAS  Google Scholar 

  87. Sun P et al (2008) Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. Faseb Journal 377(3):819–30

    CAS  Google Scholar 

  88. Ho O et al (2017) Characterization of the ruler protein interaction interface on the substrate specificity switch protein in the Yersinia type III secretion system. J Biol Chem 292(8):3299–3311

    Article  CAS  PubMed  Google Scholar 

  89. Deane JE et al (2006) Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci USA 103(33):12529–12533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank ENAGO (www.enago.cn) for providing linguistic assistance during the preparation of this manuscript and Dr. Dejun Ji (Yangzhou University) for useful comments on checking spelling and grammar. We also thank DECODE GENOMICE Biotechnology Corporation for Transcriptome sequencing.

Funding

This study was funded by the National Natural Science Foundation of China (31871893), the National Key Research and Development Program of China (2017YFF0208600), the Jiangsu Agricultural Independent Innovation Project (SCX (18) 2011), the National “Youth Top-notch Talent” Support Program (W0270187), the Introduction of Nanjing Agricultural University Scientific Research Grants Project (804121), the Central Guidance for Local Science and Technology Development (No. YDZX20173100004528), the Science and Technology Joint Project of the Yangtze River Delta (No.17395810102), the Jiangsu Collaborative Innovation Center of Meat Production and Processing, and the Yangzhou Hanjiang Science and Technology Bureau program (2020).

Author information

Authors and Affiliations

Authors

Contributions

Lele Lian: conceptualization; data curation; writing original draft. Wanjun Li, Tingyue Xue: formal analysis. Jianluan Ren, Fang Tang, Yongjie Liu: project administration. Feng Xue, Jianjun Dai: conceptualization; funding acquisition.

Corresponding author

Correspondence to Feng Xue.

Ethics declarations

Ethics approval

This article does not present any study involving human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, L., Li, W., Xue, T. et al. Comparative transcriptomic analysis provides insights into transcription mechanisms of Vibrio parahaemolyticus T3SS during interaction with HeLa cells. Braz J Microbiol 53, 289–301 (2022). https://doi.org/10.1007/s42770-021-00627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00627-8

Keywords

Navigation