Skip to main content
Log in

Virulence characteristics and antimicrobial resistance of Aeromonas veronii biovar sobria 312M, a clinical isolate

  • Bacterial Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aeromonas are bacteria widely distributed in the environment, and some species are able to cause infections in humans, of which diarrhea is the most common. The objective of this study was to evaluate the presence of virulence and antimicrobial resistance associated characteristics in A. veronii biovar sobria strain 312M isolated from diarrheal stools. For this, the genome sequencing and phenotypical tests were performed. The draft genome annotation revealed several complete pathways associated with carbon metabolism and a mucin-desulfating sulfatase which may contribute to intestine colonization, and a large number of virulence-associated genes encoding structures associated with adhesion, toxins, and secretion systems. The strain exhibited swimming and swarming motility, biofilm formation, and hemolytic activity. It was resistant to ampicillin, ampicillin/sulbactam, and amoxicillin-clavulanic acid. Although a cphA gene encoding a narrow-spectrum carbapenase was identified in the strain genome, no carbapenemase activity was detected in the antimicrobial susceptibility test. When compared with other A. veronii with complete genomes, the main differences in virulence characteristics are related to lateral flagella and type III and VI secretion systems; the antimicrobial resistance spectrum also varied among strains. The results indicated that A. veronii biovar sobria 312M presents high virulence potential and resistance to limited classes of antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73. https://doi.org/10.1128/CMR.00039-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grim CJ, Kozlova EV, Ponnusamy D, Fitts EC, Sha J, Kirtley ML, van Lier CJ, Tiner BL, Erova TE, Joseph SJ, Read TD, Shak JR, Joseph SW, Singletary E, Felland T, Baze WB, Horneman AJ, Chopra AK (2014) Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila. Appl Environ Microbiol 80:4162–4183. https://doi.org/10.1128/AEM.00486-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR (2016) Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol 7:1337. https://doi.org/10.3389/fmicb.2016.01337

    Article  PubMed  PubMed Central  Google Scholar 

  4. Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madapu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF (2006) Genome sequence of Aeromonas hydrophila ATCC 7966T: Jack of all trades. J Bacteriol 188:8272–8282. https://doi.org/10.1128/JB.00621-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J, Nash JHE, Johnson SC, Brown LL (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427. https://doi.org/10.1186/1471-2164-9-427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirov SM, Castrisios M, Shaw JG (2004) Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945. https://doi.org/10.1128/IAI.72.4.1939-1945.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hadi N, Yang Q, Barnett TC, Tabei SMB, Kirov SM, Shaw JG (2012) Bundle-forming pilus locus of Aeromonas veronii bv. sobria. Infect Immun 80:1351–1360. https://doi.org/10.1128/IAI.06304-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Surek M, Vizzotto BS, Souza EM, Pedrosa FO, Dallagassa CB, Farah SMSS, Fadel-Picheth CMT (2010) Identification and antimicrobial susceptibility of Aeromonas spp. isolated from stool samples of Brazilian subjects with diarrhoea and healthy controls. J Med Microbiol 59:373–374. https://doi.org/10.1099/jmm.0.014258-0

    Article  PubMed  Google Scholar 

  9. Abbott SL, Cheung WKW, Janda JM (2003) The genus Aeromonas: biochemical characteristics, atypical reactions, and phenotypic identification schemes. J Clin Microbiol 41:2348–2357. https://doi.org/10.1128/JCM.41.6.2348–2357.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borrell N, Acinas SG, Figueras MJ, Martínez-Murcia AJ (1997) Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. J Clin Microbiol 35:1671–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guizelini D, Raittz RT, Cruz LM, Souza EM, Steffens MBR, Pedrosa FO (2016) GFinisher: a new strategy to refine and finish bacterial genome assemblies. Sci Rep 6:34963. https://doi.org/10.1038/srep34963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  15. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  17. Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Liu Y, Zhou Z, Huang H, Ren Y, Zhang Y, Li G, Zhou Z, Wang L (2011) Complete genome sequence of Aeromonas veronii strain B565. J Bacteriol 193:3389–3390. https://doi.org/10.1128/JB.00347-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chopra AK, Peterson JW, Xu XJ, Coppenhaver DH, Houston CW (1996) Molecular and biochemical characterization of a heat-labile cytotonic enterotoxin from Aeromonas hydrophila. Microb Pathog 21:357–377. https://doi.org/10.1006/mpat.1996.0068

    Article  CAS  PubMed  Google Scholar 

  21. Bomar L, Stephens WZ, Nelson MC, Velle K, Guillemin K, Graf J (2013) Draft genome sequence of Aeromonas veronii Hm21, a symbiotic isolate from the medicinal leech digestive tract. Genome Announc 1:e00800–e00813. https://doi.org/10.1128/genomeA.00800-13

    Article  PubMed  PubMed Central  Google Scholar 

  22. Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44:344–361. https://doi.org/10.1016/j.micpath.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  23. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clinical and laboratory standards institute (CLSI) (2008) Performance standards for antimicrobial susceptibility testing: eighteenth informational supplement M100-S18, vol 28. CLSI, Wayne

    Google Scholar 

  25. Clinical and laboratory standards institute (CLSI) (2011) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: approved guideline 2nd edn, M45–A2, vol 30, n 19. CLSI, Wayne

  26. Carter MQ, Louie JW, Feng D, Zhong W, Brandl MT (2016) Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation. Food Microbiol 57:81–89. https://doi.org/10.1016/j.fm.2016.01.006

    Article  PubMed  Google Scholar 

  27. Jagoda SSSDS, Honein K, Arulkanthan A, Ushio H, Asakawa S (2017) Genome sequencing and annotation of Aeromonas veronii strain Ae52, a multidrug-resistant isolate from septicaemic gold fish (Carassius auratus) in Sri Lanka. Genomics Data 11:46–48. https://doi.org/10.1016/j.gdata.2016.11.011

    Article  Google Scholar 

  28. Abdelhamed H, Lawrence ML, Waldbieser G (2019) Complete genome sequence data of multidrug-resistant Aeromonas veronii strain MS-18-37. Data in Brief 23:103689. https://doi.org/10.1016/j.dib.2019.01.037

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kang Y, Pan X, Xu Y, Siddiqui SA, Wang C, Shan X, Qian A (2016) Complete genome sequence of the fish pathogen Aeromonas veronii TH0426 with potential application in biosynthesis of pullulanase and chitinase. J Biotechnol 227:81–82. https://doi.org/10.1016/j.jbiotec.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  30. Fuchs TM, Eisenreich W, Heesemann J, Goebel W (2012) Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiol Rev 36:435–462. https://doi.org/10.1111/j.1574-6976.2011.00301

    Article  CAS  PubMed  Google Scholar 

  31. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152. https://doi.org/10.1128/IAI.01386-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prediger KC, Surek M, Dallagassa CB, Assis FEA, Piantavini MS, Souza EM, Pedrosa FO, Farah SMSS, Alberton D, Fadel-Picheth CMT (2017) Utilization of carbon sources by clinical isolates of Aeromonas. Can J Microbiol 63:359–364. https://doi.org/10.1139/cjm-2016-0526

    Article  CAS  PubMed  Google Scholar 

  33. Dacanay A, Boyd JM, Fast MD, Knickle LC, Reith ME (2010) Aeromonas salmonicida type I pilus system contributes to host colonization but not invasion. Dis Aquat Org 88:199–206. https://doi.org/10.3354/dao02157

    Article  CAS  Google Scholar 

  34. Kirov SM, Barnett TC, Pepe CM, Strom MS, Albert MJ (2000) Investigation of the role of type IV Aeromonas pilus (Tap) in the pathogenesis of Aeromonas gastrointestinal infection. Infect Immun 68:4040–4048. https://doi.org/10.1128/iai.68.7.4040-4048.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyd JM, Dacanay A, Knickle LC, Touhami A, Brown LL, Jericho MH, Johnson SC, Reith M (2008) Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.). Infect Immun 76:1445–1455. https://doi.org/10.1128/IAI.01019-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fosse T (2010) Aeromonas, Vibrio and Plesiomonas. In: Courvalin P, Leclercq R, Rice LB (eds) Antibiogram. ESKA Publishing, ASM Press, Portland, pp 509–518

    Google Scholar 

  37. Wu CJ, Chen PL, Wu JJ, Yan JJ, Lee CC, Lee HC, Lee NY, Chang CM, Lin YT, Chiu YC, Ko WC (2012) Distribution and phenotypic and genotypic detection of a metallo-b-lactamase, CphA, among bacteraemic Aeromonas isolates. J Med Microbiol 61:712–719. https://doi.org/10.1099/jmm.0.038323-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian Program of National Institutes of Science and Technology - INCT/Brazilian Research Council - CNPq/MCT and Fundação Araucária. We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyntia M. T. Fadel-Picheth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Waldir P. Elias

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prediger, K.d.C., Dallagassa, C.B., Moriel, B. et al. Virulence characteristics and antimicrobial resistance of Aeromonas veronii biovar sobria 312M, a clinical isolate. Braz J Microbiol 51, 511–518 (2020). https://doi.org/10.1007/s42770-019-00180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00180-5

Keywords

Navigation