Skip to main content

Advertisement

Log in

Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The association of plant with microorganisms, such as dark septate endophytic fungi, has mitigated the harmful effects of chemical, physical, and biological agents on the host. The objective of this work was to evaluate the interaction of the dark septate endophytic fungi with cowpea plants under salt stress. Endophytic fungi were isolated from Vochysia divergens root system, and molecular identification of fungi was performed by sequencing the ITS region. We selected and identified Sordariomycetes sp1-B’2 and Melanconiella elegans-21W2 for their ability to infect V. divergens root in vitro with development of typical dark septate fungi structures. Cowpea plants—inoculated or not inoculated with Sordariomycetes sp1-B’2 and M. elegans 21W2—were cultivated in 5-L pots under greenhouse conditions and submitted to four different electrical conductivities of irrigation water (1.2, 2.2, 3.6, and 5.0 dS m1). The salinity caused decrease in leaf concentration of K and increased leaf concentration of calcium, sodium, and chlorine; and no influence of dark septate endophytic fungi was observed in these responses. On the other hand, root colonization with Sordariomycetes sp1-B’2 and M. elegans 21W2 resulted in improved nutrition with N and P in cowpea under salt stress, favoring the growth and rate of liquid photosynthesis. However, such positive responses were evident only at moderate levels of salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lacerda CF, Ferreira JFS, Liu X, Suarez DL (2016) Evapotranspiration as a criterion to estimate nitrogen requirement of maize under salt stress. J Agron Crop Sci 202:192–202. https://doi.org/10.1111/jac.12145

    Article  CAS  Google Scholar 

  2. Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46(2):440–447. https://doi.org/10.1016/j.procbio.2010.09.013

    Article  CAS  Google Scholar 

  3. Lúcio WS, Lacerda CF, Mendes Filho PF, Hernandez FFF, Neves ALR, Gomes Filho E (2013) Crescimento e respostas fisiológicas do meloeiro inoculado com fungos micorrízicos arbusculares sob estresse salino. Semina: Ciências Agrárias 34(4):1587–1602. https://doi.org/10.5433/1679-0359.2013v34n4p1587

    Article  CAS  Google Scholar 

  4. Mahmoud FM, Krimi Z, Maciá-Vicenteh JG, Errahmani MB, Lopez-Llorca LV (2017) Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Rev Iberoam Micol 34(2):116–120. https://doi.org/10.1016/j.riam.2016.06.007

    Article  Google Scholar 

  5. Moreira SD, França AC, Rocha WW, Tibães ESR, Neiva Júnior E (2018) Inoculation with mycorrhizal fungi on the growth and tolerance to water deficit of coffee plants. Rev Bras Eng Agríc Ambient 22(11):747–752. https://doi.org/10.1590/1807-1929/agriambi.v22n11p747-752

    Article  Google Scholar 

  6. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19. https://doi.org/10.1016/j.fbr.2009.07.001

    Article  Google Scholar 

  7. Souza WP, Mello IS, Vendruscullo SJ, Silva GF, Cunha CN, White JF, Soares MA (2017) Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS One 12(7):e0182017. https://doi.org/10.1371/journal.pone.0182017

    Article  CAS  Google Scholar 

  8. Silva FA, Liotti RG, Boleti APA, Reis EM, Passos MBS, Santos EL, Sampaio OM, Januario AH, Branco CLB, Silva GF, Mendonca EAF, Soares MA (2018) Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS One 13(4):e0195874. https://doi.org/10.1371/journal.pone.0195874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liotti RG, Figueiredo MIS, Silva GF, Mendonca EAF, Soares MA (2017) Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 207:8–18. https://doi.org/10.1016/j.micres.2017.10.011

    Article  PubMed  Google Scholar 

  10. JianQui S, LiangDong G, Weiz Z, WenXiang P, DeFu C (2008) Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Sci China Ser C-Life Sci 51(8):751–759. https://doi.org/10.1007/s11427-008-0091-z

    Article  Google Scholar 

  11. Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164(3):290–296. https://doi.org/10.1016/j.micres.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  12. Piercey MM, Graham SW, Currah RS (2004) Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol Res 108(8):955–964. https://doi.org/10.1017/S0953756204000528

    Article  CAS  PubMed  Google Scholar 

  13. Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia 35:87–100. https://doi.org/10.3767/003158515X687669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan ZL, Su ZZ, Zhang CL (2016) Understanding the biodiversity and functions of root fungal endophytes: the ascomycete Harpophora oryzae as a model case. In: Druzhinina IS, Kubicek CP (eds) Environmental and Microbial Relationships. Springer, Berlin, pp 205–214

    Chapter  Google Scholar 

  15. Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310. https://doi.org/10.1046/j.1469-8137.1998.00265.x

    Article  Google Scholar 

  16. Jumpponen A (2001) Dark septate endophytes–are they mycorrhizal? Mycorrhiza 11(4):207–211. https://doi.org/10.1007/s005720100112

    Article  Google Scholar 

  17. Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2(1):10–20. https://doi.org/10.1016/j.funeco.2008.10.005

    Article  Google Scholar 

  18. Fracchia S, Krapovickas L, Aranda-Rickert A, Valentinuzzi VS (2011) Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75(11):1016–1023. https://doi.org/10.1016/j.jaridenv.2011.04.034

    Article  Google Scholar 

  19. Silvani V, Rothen C, Rodriguez MA, Cisneiros G, Godeas A, Aranda-Rickert A, Sebastián F (2013) Fungal root colonization of Puccinellia frigida (Phil.) Johnston, a dominant grass species inhabiting the margins of high-altitude hypersaline Andean wetlands. Aquatic Bot 108:26–32. https://doi.org/10.1016/j.aquabot.2013.03.001

    Article  Google Scholar 

  20. Rothen C, Miranda V, Aranda-Rickert A, Fracchia S, Rodríguez MA (2017) Characterization of dark septate endophyte fungi associated with cultivated soybean at two growth stages. Appl Soil Ecol 120:62–69. https://doi.org/10.1016/j.apsoil.2017.07.033

    Article  Google Scholar 

  21. Mesquita CPB, Sartwell SA, Ordemann EV, Porazinska DL, Farrer EC, King AJ, Spasojevic MJ, Smith JG, Suding KN, Schmidt SK (2018) Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecol 36:63–74. https://doi.org/10.1016/j.funeco.2018.07.009

    Article  Google Scholar 

  22. Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Vianna MF, Scorsetti AC (2016) Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina. Rev Argent Microbiol 48(2):154–160. https://doi.org/10.1016/j.ram.2015.11.006

    Article  PubMed  Google Scholar 

  23. Santos SG, Silva PRA, Garcia AC, Zilli JE, Berbara RLL (2017) Dark septate endophyte decreases stress on rice plants. Braz J Microbiol 48(2):333–341. https://doi.org/10.1016/j.bjm.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  24. Vergara C, Araujo KEC, Urguiaga S, Schultz N, Balieiri FC, Medeiros PS, Santos LA, Xavier GR, Zilli JE (2017) Dark septate endophytic fungi help tomato to acquire nutrients from ground plant material. Front Microbiol 2437:1–12. https://doi.org/10.3389/fmicb.2017.02437

    Article  Google Scholar 

  25. McCormick MK, Whigham DF, Sloan D, O’Malley K, Hodkinson B (2006) Orchidfungus fidelity: a marriage meant to last? Ecology 87:903–911. https://doi.org/10.1890/0012-9658(2006)87[903:OFAMMT]2.0.CO;2

    Article  PubMed  Google Scholar 

  26. Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4(3):233–240. https://doi.org/10.1016/j.funeco.2010.09.010

    Article  Google Scholar 

  27. Cardoso JM, Melo FB, Lima MG (2005) Ecofisiologia e manejo de plantio. In: Freire Filho FR, Lima JAA, Ribeiro VQ (eds) Feijão-caupi: avanços tecnológicos. Embrapa, Brasilia, pp 213–225

    Google Scholar 

  28. Guimarães AA, Jaramillo PMD, Nóbrega RSA, Florentino LA, Silva KB, Moreira FMS (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78(18):6726–6733. https://doi.org/10.1128/AEM.01303-12

    Article  CAS  Google Scholar 

  29. Bezerra MEJ, Lacerda CF, Sousa GG, Gomes VFF, Mendes Filho PF (2010) Biomassa, atividade microbiana e FMA em rotação cultural milho/feijão-de-corda utilizando-se águas salinas. Rev Ciênc Agron 41(4):562–570. https://doi.org/10.1590/S1806-66902010000400008

    Article  Google Scholar 

  30. Scervino JM, Gottlieb A, Silvani VA, Pérgola M, Fernández L, Godeas AM (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrizal fungus (AMF) Gigaspora rosea. Soil Biol Biocherm 41(8):1753–1756. https://doi.org/10.1016/j.soilbio.2009.04.021

    Article  CAS  Google Scholar 

  31. Upson R, Newsham KK, Bridge PD, Pearce DA, Read DJ (2009) Taxonomic affinities of dark septate root endophytes of Colobanthus quitensis and Deschampsia antarctica, the two native Antarctic vascular plant species. Fungal Ecol 2(4):184–196. https://doi.org/10.1016/j.funeco.2009.02.004

    Article  Google Scholar 

  32. Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii rolfe. J Plant Growth Regul 29(3):328–337. https://doi.org/10.1007/s00344-010-9139-y

    Article  CAS  Google Scholar 

  33. Vergara C, Araujo KEC, Alves LS, Souza SR, Santos LA, Santa-Catarina C, Silva K, Pereira GMD, Xavier GR, Zilli JE (2018) Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Braz J Microbiol 49(1):67–78. https://doi.org/10.1016/j.bjm.2017.04.010

    Article  CAS  PubMed  Google Scholar 

  34. Vergara C, Araujo KEC, Souza SR, Schultz N, Saggin Junior OJ, Sperandio MVL, Zilli JE (2019a) Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting fungi. Pesq Agropec Bras 54(e25140):1–24. https://doi.org/10.1590/s1678-3921.pab2019.v54.25140

    Article  Google Scholar 

  35. Vergara C, Araujo KEC, Sperandio MVL, Santos LA, Urguiaga S, Zilli JE (2019b) Dark septate endophytic fungi increase the activity of proton pumps, efficiency of 15 N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants. Braz J Microbiol 50(3):825–838. https://doi.org/10.1007/s42770-019-00092-4

    Article  PubMed  Google Scholar 

  36. Ban Y, Xu Z, Yang Y, Zhang H, Chen H, Tang M (2017) Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere 27(2):283–292. https://doi.org/10.1016/S1002-0160(17)60316-3

    Article  Google Scholar 

  37. Zhang Q, Gong M, Yuan J, Hou Y, Zhang H, Wang Y, Hou X (2017) Dark septate endophyte improves drought tolerance in sorghum. Int J Agri Biol 19:53–60. https://doi.org/10.17957/IJAB/15.024

    Article  CAS  Google Scholar 

  38. Lorenzi H (2002) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil, 2nd edn (2). Instituto Plantarum, São Paulo

    Google Scholar 

  39. Cunha CN, Junk WJ (2004) Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. Appl Veg Sci 7:103–110

    Google Scholar 

  40. Biz AR, Mendonca EAF, Almeida EG, Soares MA (2017) Endophytic fungal diversity associated with the roots of cohabiting plants in the Pantanal wetland. In: Soares MA, Jardim MAG (eds) Natural resources in wetlands: from Pantanal to Amazonia, 1st edn. Museu Paraense Emílio Goeldi, Belém, pp 37–70

    Google Scholar 

  41. Parpinelli BAS, Siqueira KA, Kellner Filho LC, Pimenta LP, Costa RM, Parreira RLT, Veneziani RCS, Silva MLA, Cunha WR, Pauletti PM, Soares MA, Januario AH (2017) Effect of endophytic fungal associations on the chemical profile of in vitro Vochysia divergens seedlings. J Braz Chem Soc 28(12):2375–2381. https://doi.org/10.21577/0103-5053.20170091

    Article  CAS  Google Scholar 

  42. Siqueira KA, Brissow ER, Santos JL, White JF, Santos FR, Ameida EG, Soares MA (2017) Endophytism and bioactivity of endophytic fungi isolated from Combretum lanceolatum Pohl ex Eichler. Symbiosis 71(3):211–222. https://doi.org/10.1007/s13199-016-0427-6

    Article  CAS  Google Scholar 

  43. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  44. Peterson RL, Massicotte HB, Lewis H, Melville LH (2004) Mycorrhizas: anatomy and cell biology. National Research Council, Ottawa

    Google Scholar 

  45. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  46. White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, London, pp 315–322

    Google Scholar 

  47. Koske RE, Gemma JN (1989) A modified procedure for staning roots to detect VA mycorrhizas. Mycol Res 92(4):486–488. https://doi.org/10.1016/S0953-7562(89)80195-9

    Article  Google Scholar 

  48. Giovannetti M, Mosse B (1980) An evaluation of technique for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500

    Article  Google Scholar 

  49. Silva FAZ, Azevedo CAV (2002) Versão do programa computacional Assistat para o sistema operacional Windows. Revista Brasileira de Produtos Agroindustriais 4:71–78

    Article  Google Scholar 

  50. Senabio JA, Silva IP, Santos JL, Soares MA (2017) Antimicrobial and antioxidant activity of endophytic fungi isolated from Hyptis suaveolens roots. In: Soares MA, Jardim MAG (eds) Natural resources in wetlands: from Pantanal to Amazonia, 1st edn. Museu Paraense Emílio Goeldi, Belém, pp 115–136

    Google Scholar 

  51. Su ZZ, Mao LJ, Li N, Feng XX, Yuan ZL, Wang LW, Lin FC, Zhang CL (2013) Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One 8(4):e61332. https://doi.org/10.1371/journal.pone.0061332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. David AS, Haridas S, LaButti K, Lim J, Lipzen A, Wang M, Barry K, Grigoriev IV, Spatafora JW, May G (2016) Draft genome sequence of microdochium bolleyi, a dark septate fungal endophyte of beach grass. Genome Announc 4(2):e00270–e00216. https://doi.org/10.1128/genomeA.00270-16

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kytoviita MM, Ruotsalainen AL (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94(8):1309–1315. https://doi.org/10.3732/ajb.94.8.1309

    Article  PubMed  Google Scholar 

  54. Sieber TN, Grüning CR (2013) Fungal roots endophytes. In: Eshel A, Beeckman T (eds) Plant roots: The hidden half. CRC, New York, p 38/43

    Google Scholar 

  55. Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14(4):277–281. https://doi.org/10.1007/s00572-004-0314-5

    Article  CAS  PubMed  Google Scholar 

  56. Sathiyadash K, Thangavelu M, Eswaranpillai U (2010) Arbuscular mycorrhizal and dark septate endophyte fungal associations in South Indian grasses. Symbiosis 52(1):21–32. https://doi.org/10.1007/s13199-010-0096-9

    Article  Google Scholar 

  57. Zhang ZB, Zeng QG, Yan RM, Wang Y, Zou ZR, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J Microbiol Biotechnol 27(3):479–486. https://doi.org/10.1007/s11274-010-0476-6

    Article  CAS  Google Scholar 

  58. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3. https://doi.org/10.1186/1471-2180-12-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, Lee IJ (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:1–13. https://doi.org/10.3389/fmicb.2017.00686

    Article  Google Scholar 

  60. Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6(7):e14823. https://doi.org/10.1371/journal.pone.0014823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bibi S, Hussain A, Hamayun M, Rahman H, Iqbal A, Shah M, Irshad M, Qasim M, Islam B (2018) Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere 211:653–663. https://doi.org/10.1016/j.chemosphere.2018.07.197

    Article  CAS  PubMed  Google Scholar 

  62. Marschner H (2012) Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  63. Aragão RM, Silveira JAG, Silva EM, Lobo AKM, Dutra ATB (2010) Absorção, fluxo no xilema e assimilação do nitrato no feijão-caupi submetido à salinidade. Rev Ciênc Agron 41(1):100–106

    Article  Google Scholar 

  64. Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51(3):449–459. https://doi.org/10.1006/jare.2001.0925

    Article  Google Scholar 

  65. Plenchette C, Duponnois R (2005) Growth response of the saltbush Atriplex mummularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices. J Arid Environ 61(4):535–540. https://doi.org/10.1016/j.jaridenv.2004.10.003

    Article  Google Scholar 

  66. Spagnoletti FN, Tobar NE, Pardo AFD, Chiocchio VM, Lavado RS (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32. https://doi.org/10.1016/j.apsoil.2016.11.010

    Article  Google Scholar 

  67. Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49(2):107–120. https://doi.org/10.1016/S0098-8472(02)00064-3

    Article  CAS  Google Scholar 

  68. Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW (2011) Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ 409(6):1069–1074. https://doi.org/10.1016/j.scitotenv.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  69. Khan AR, Ullah I, Waqas M, Park GS, Khan AL, Hong SJ, Ullah R, Jung BK, Park CE, Rehman SU, Lee IJ, Shin JH (2017) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136:180–188. https://doi.org/10.1016/j.ecoenv.2016.03.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the following Brazilian institutions: ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)’, ‘Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal)’, ‘Instituto Nacional de Ciência e Tecnologia de Áreas Úmidas (INAU)’, and ‘Fundação de Amparo à Pesquisa do Mato Grosso (FAPEMAT)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenya Gonçalves Nunes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Marina Baquerizo Martinez.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, G.C., Nunes, K.G., Soares, M.A. et al. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Braz J Microbiol 51, 243–253 (2020). https://doi.org/10.1007/s42770-019-00173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00173-4

Keywords

Navigation