Skip to main content
Log in

A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR

  • Environmental Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We report a specific and sensitive method to improve the coupling of propidium monoazide (PMA) with DNA derived from killed cells of Escherichia coli using UV light of 365 nm. UV light of three different intensities mainly 2.4 × 103, 4.8 × 103, and 7.2 × 103 μJ/cm2 was applied to E. coli cells each for 1, 3, and 5 min. PMA was found to be successfully cross-linked with the DNA from killed cells of E. coli at 4.8 × 103 μJ/cm2 in 3 min leading to the complete inhibition of PCR amplification of DNA derived from PMA-treated heat-killed cells. In spiked phosphate-buffered saline and potable water samples, the difference of the Cq values between PMA-treated viable cells and PMA-untreated viable cells ranged from −0.17 to 0.2, demonstrating that UV-induced PMA activation had a negligible effect on viable cells. In contrast, the difference of the Cq values between PMA-treated heat-killed cells and PMA-untreated heat-killed cells ranged from 8.9 to 9.99, indicating the ability of PMA to inhibit PCR amplification of DNA derived from killed cells to an equivalent as low as 100 CFU. In conclusion, this UV-coupled PMA-qPCR assay provided a rapid and sensitive methodology to selectively detect viable E. coli cells in spiked water samples within 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Gorchev HG, Ozolins G (2011) WHO guidelines for drinking-water quality. Vol 38. WHO Press https://doi.org/10.1016/S1462-0758(00)00006-6

  2. Unicef. Water, sanitation and hygiene. http://www.unicef.org/wash/. Published 2015. Accessed August 19, 2019.

  3. Graham N (1999) Guidelines for drinking-water quality, 2nd edition, Addendum to volume 1 – recommendations, World Health Organisation, Geneva, 1998, 36 pages. Urban Water 1(2):183. https://doi.org/10.1016/S1462-0758(00)00006-6

    Article  Google Scholar 

  4. Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiology Open 5(6):901–922. https://doi.org/10.1002/mbo3.383

    Article  PubMed  Google Scholar 

  5. Maheux AF, Bissonnette L, Boissinot M et al (2011) Method for rapid and sensitive detection of Enterococcus sp. and Enterococcus faecalis/faecium cells in potable water samples. Water Res 45(6):2342–2354. https://doi.org/10.1016/j.watres.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  6. Deshmukh RA, Bhand S, Roy U (2019) A novel molecular quantitative method for rapid and sensitive detection of Escherichia coli from roof-harvested rainwater. Anal Methods 11(25):3155–3167. https://doi.org/10.1039/c9ay00587k

    Article  CAS  Google Scholar 

  7. Wang S, Levin RE (2006) Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J Microbiol Methods 64(1):1–8. https://doi.org/10.1016/j.mimet.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  8. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. https://doi.org/10.1016/j.mimet.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  9. Nocker A, Sossa KE, Camper AK (2007) Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 70(2):252–260. https://doi.org/10.1016/j.mimet.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  10. Slimani S, Robyns A, Jarraud S, et al. (2012) Evaluation of Propidium Monoazide (PMA) Treatment directly on membrane filter for the enumeration of viable but non cultivable legionella by QPCR. Vol 88. https://doi.org/10.1016/j.mimet.2011.12.010

  11. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73(16):5111–5117. https://doi.org/10.1128/AEM.02987-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taskin B, Gozen AG, Duran M (2011) Selective quantification of viable Escherichia coli bacteria in biosolids by quantitative PCR with propidium monoazide modification. Appl Environ Microbiol 77(13):4329–4335. https://doi.org/10.1128/AEM.02895-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Àlvarez G, González M, Isabal S, Blanc V, León R (2013) Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 3(1):1. https://doi.org/10.1186/2191-0855-3-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brescia CC, Griffin SM, Ware MW, Varughese EA, Egorov AI, Villegas EN (2009) Cryptosporidium propidium monoazide-PCR, a molecular biology-based technique for genotyping of viable Cryptosporidium oocysts. Appl Environ Microbiol 75(21):6856–6863. https://doi.org/10.1128/AEM.00540-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yáñez MA, Nocker A, Soria-Soria E, Múrtula R, Martínez L, Catalán V (2011) Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. J Microbiol Methods 85(2):124–130. https://doi.org/10.1016/j.mimet.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Yoon J, Sung-Kwon M, Choi C, Buom-Yong R, Lee S (2019) Detection of viable but nonculturable Vibrio parahaemolyticus induced by prolonged cold-starvation using propidium monoazide real-time polymerase chain reaction. Lett Appl Microbiol :lam.13157. https://doi.org/10.1111/lam.13157

  17. Hellein KN, Kennedy EM, Harwood VJ, Gordon KV, Wang SY, Lepo JE (2012) A filter-based propidium monoazide technique to distinguish live from membrane-compromised microorganisms using quantitative PCR. J Microbiol Methods 89(1):76–78. https://doi.org/10.1016/j.mimet.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  18. Whittaker PA, Southern EM (1986) Ultraviolet irradiation of DNA: a way of generating partial digests for rapid restriction site mapping. Gene. 41(1):129–134. https://doi.org/10.1016/0378-1119(86)90276-3

    Article  CAS  PubMed  Google Scholar 

  19. Khan IUH, Gannon V, Kent R et al (2007) Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-culturable Escherichia coli from agriculture watersheds. J Microbiol Methods 69(3):480–488. https://doi.org/10.1016/j.mimet.2007.02.016

    Article  CAS  PubMed  Google Scholar 

  20. Picard FJ, Gagnon M, Bernier MR et al (2009) Internal control for nucleic acid testing based on the use of purified Bacillus atrophaeus subsp. globigii Spores. J Clin Microbiol 47(3):751–757. https://doi.org/10.1128/jcm.01746-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13(20):7207–7221 http://www.ncbi.nlm.nih.gov/pubmed/4059056. Accessed January 10, 2019

    Article  CAS  Google Scholar 

  22. Sambrook J, Russell DW, David W (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. https://books.google.co.in/books/about/Molecular_Cloning.html?id=Bosc5JVxNpkC. Accessed March 7, 2018.

  23. Maheux AF, Bissonnette L, Boissinot M et al (2011) Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and Shigella species in potable water samples. Appl Environ Microbiol 77(17):6199–6207. https://doi.org/10.1128/AEM.02337-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luna GM, Dell’anno A, Pietrangeli B, Danovaro R (2011) A new molecular approach based on qPCR for the quantification of fecal bacteria in contaminated marine sediments. J Biotechnol 157:446–453. https://doi.org/10.1016/j.jbiotec.2011.07.033

    Article  CAS  PubMed  Google Scholar 

  25. Nocker A, Camper AK (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72(3):1997–2004. https://doi.org/10.1128/AEM.72.3.1997-2004.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We immensely thank the Indian Council of Medical Research (ICMR), Govt. of India, for awarding senior research fellowship (SRF-8/6/5/ITR-F/2018) to Mr. Rehan Deshmukh. Mr. Arun Kumar Prusty’s kind assistance in setting up and usage of CL-1000L UV Crosslinker is highly acknowledged.

Funding

This research was supported by a grant from Centre for Research Excellence in Waste Water and Energy Management (CORE WWEM) Project of Birla Institute of Technology and Science—Pilani, K. K. Birla Goa Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, R., Bhand, S. & Roy, U. A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR. Braz J Microbiol 51, 773–778 (2020). https://doi.org/10.1007/s42770-019-00161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00161-8

Keywords

Navigation